{"title":"On 12-Congruences of Elliptic Curves","authors":"Sam Frengley","doi":"10.1142/s1793042124500301","DOIUrl":null,"url":null,"abstract":". We construct infinite families of pairs of (geometrically non-isogenous) elliptic curves defined over Q with 12-torsion subgroups that are isomorphic as Galois modules. This extends previous work of Chen [Che16] and Fisher [Fis20] where it is assumed that the underlying isomorphism of 12-torsion subgroups respects the Weil pairing. Our approach is to compute explicit birational models for the modular diagonal quotient surfaces which parametrise such pairs of elliptic curves. A key ingredient in the proof is to construct simple (algebraic) conditions for the 2, 3, or 4-torsion subgroups of a pair of elliptic curves to be isomorphic as Galois modules. These conditions are given in terms of the j -invariants of the pair of elliptic curves.","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793042124500301","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
. We construct infinite families of pairs of (geometrically non-isogenous) elliptic curves defined over Q with 12-torsion subgroups that are isomorphic as Galois modules. This extends previous work of Chen [Che16] and Fisher [Fis20] where it is assumed that the underlying isomorphism of 12-torsion subgroups respects the Weil pairing. Our approach is to compute explicit birational models for the modular diagonal quotient surfaces which parametrise such pairs of elliptic curves. A key ingredient in the proof is to construct simple (algebraic) conditions for the 2, 3, or 4-torsion subgroups of a pair of elliptic curves to be isomorphic as Galois modules. These conditions are given in terms of the j -invariants of the pair of elliptic curves.
期刊介绍:
This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.