Weining Du , Yaqiang Jiang , Mingqiang Yan , Zejiang Zhang , Jun Deng , Zhicheng Xie
{"title":"Layered double hydroxide reinforced thermal expansion fire extinguishing agent for potential solid fire prevention","authors":"Weining Du , Yaqiang Jiang , Mingqiang Yan , Zejiang Zhang , Jun Deng , Zhicheng Xie","doi":"10.1080/1023666X.2024.2444293","DOIUrl":"10.1080/1023666X.2024.2444293","url":null,"abstract":"<div><div>In this work, phosphorus-decorated Zn-Al-CO<sub>3</sub> layered double hydroxide (PLDH) was prepared via a co-precipitation strategy and thus introduced into intumescent flame retardant dispersion to fabricate PLDH-reinforced thermal expansion fire extinguishing agent (FEA@PLDH). It was found that the phosphorus-containing unit was successfully anchored onto the PLDH. The prepared FEA@PLDH solution with a viscosity of 146 mPa·s exhibited good interfacial compatibility with the ethylene-vinyl acetate (EVA) surface. Taking advantage of the synergistic catalytic carbonization and expanded insulating barrier effects of FEA@PLDH, the corresponding coated EVA (EVA-FEA@PLDH1) with 1 wt% of PLDH could form a continuous and compact carbonaceous block layer under fire or high-temperature conditions. Meanwhile, the LOI for EVA-FEA@PLDH1 was increased from 22.0% to 32.0% and reached the UL-94 rating of V0. Moreover, EVA-FEA@PLDH1 showed delayed TTI (77 s) and T<sub>PHRR</sub> (146 s), with 6% and 44% reductions in THR and TSP, respectively, and 43% increment in residual char, as compared to the EVA-FEA. In addition, fire resistance experiment revealed that EVA-FEA@PLDH1 could withstand the ∼1300 °C flame for 467 s longer than that of the EVA-FEA (171 s). This research provides an intriguing fire extinguishing agent for the potential fire prevention of flammable polymer materials.</div></div>","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":"30 2","pages":"Pages 142-154"},"PeriodicalIF":1.7,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143176511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Vinitha , G. Velraj , K. Anandan , G. K. Meenatchi , Muthaiah Shellaiah
{"title":"Synthesis of PPy/CeO2 nanocomposites for supercapacitor application","authors":"M. Vinitha , G. Velraj , K. Anandan , G. K. Meenatchi , Muthaiah Shellaiah","doi":"10.1080/1023666X.2024.2440504","DOIUrl":"10.1080/1023666X.2024.2440504","url":null,"abstract":"<div><div>Polypyrrole is synthesized by the chemical oxidation polymerization method with K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> as an oxidant, and H<sub>2</sub>SO<sub>4</sub> as a dopant. This method was effective, as indicated by the large yield of PPy/CeO<sub>2</sub> (Polypyrrole/Cerium oxide) nanocomposite produced during synthesis. FT-IR spectra demonstrated the chemical interactions between PPy and CeO<sub>2</sub> nanoparticles. The prepared polypyrrole and polypyrrole nanocomposites were studied through structural and optical studies using XRD and UV-Vis analysis. Average crystalline sizes of PPy and PPy/CeO<sub>2</sub> nanocomposites are found to be 10.4 and 8.84 nm. The electrical conductivity of polypyrrole is lower than that of polypyrrole nanocomposite, which could be attributed to the inadequate hydration water as well as the surface conductivity carried through the thin polymer layer. In comparison to n-CeO<sub>2</sub>PPy (433 F/g) and PPy (226 F/g) at the scan rate of 100 mV/s, the electrochemical measurements demonstrated that the fabricated electrode of n-CeO<sub>2</sub>PPy is a suitable electrode material and can improve the capacitive performance of supercapacitors due to its high capacitive value (433 F/g). Electrochemical studies showed that CeO<sub>2</sub>PPy nanocomposites (n-CeO<sub>2</sub>PPy) have improved specific capacitance and reduced impedance compared to PPy. These improvements can be attributed to the synergistic effects between PPy and CeO<sub>2</sub>PPy nanocomposites, which facilitate efficient charge transport and ion diffusion.</div></div>","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":"30 2","pages":"Pages 122-132"},"PeriodicalIF":1.7,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143176508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ha Ngoc Giang , Dung Thi Phuong Truong , Xuan Kim Hoang , Tuan Nguyen Anh Huynh
{"title":"Effect of sodium chloride and water-soluble polymers on thermochromic properties of hydroxypropyl cellulose solution","authors":"Ha Ngoc Giang , Dung Thi Phuong Truong , Xuan Kim Hoang , Tuan Nguyen Anh Huynh","doi":"10.1080/1023666X.2024.2435853","DOIUrl":"10.1080/1023666X.2024.2435853","url":null,"abstract":"<div><div>Hydroxypropyl cellulose (HPC) and its rather low lower-critical-solution-temperature (LCST) were the main research targets in many recent publications. In this study, a simple and affordable approach to measure LCST using a Brookfield viscometer was presented. The setup using a popular hot plate and a silicone oil bath could well detect the HPC solution’s LCST values. The result was in good agreement with the particle size change obtained using the dynamic light scattering technique. The effect of polyacrylic acid (PAA) and other cellulose derivatives including hydroxypropyl methylcellulose (HPMC), hydroxyethyl cellulose (HEC), or sodium carboxymethyl cellulose (CMC) on HPC’s LCST was investigated. The mixture of HPC with PAA, HPMC, and CMC showed the lowest LCST. However, the effect of NaCl seemed to be stronger when the LCST value of only 28.5 °C was obtained with 1 wt% of HPC and 5 wt% of NaCl. Fourier-transformed infrared spectroscopy results also showed a stronger interaction of HPC/NaCl compared to the mixture with PAA of HPMC. The differential scanning calorimetry only detected the signal change correlated with LCST in the cooling cycle. The glass window fabricated with the current thermochromic solution was able to block and transmit visible light well at low and elevated temperatures, respectively.</div></div>","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":"30 2","pages":"Pages 109-121"},"PeriodicalIF":1.7,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143177801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pragnesh N. Dave , Pradip M. Macwan , Bhagvan Kamaliya
{"title":"Synthesis, rheological and thermal studies of Gum ghatti-cl-poly(acrylic acid) hydrogels containing CoFe2O4 nanoparticles","authors":"Pragnesh N. Dave , Pradip M. Macwan , Bhagvan Kamaliya","doi":"10.1080/1023666X.2024.2410746","DOIUrl":"10.1080/1023666X.2024.2410746","url":null,"abstract":"<div><div>In this work, Gum ghatti-cl-poly(acrylic acid)/CoFe<sub>2</sub>O<sub>4</sub> (GGAACF) hydrogels were synthesized using a free radical polymerization technique, with CoFe<sub>2</sub>O<sub>4</sub> nanoparticles incorporated via a co-precipitation method using nitrates as precursors. Thermal gravimetric analysis (TGA) revealed that the inclusion of CoFe<sub>2</sub>O<sub>4</sub> nanoparticles enhanced the thermal stability of the hydrogels. Swelling studies indicated that the addition of 30 mg of CoFe<sub>2</sub>O<sub>4</sub> nanoparticles maximized water retention. Rheological assessments demonstrated non-Newtonian behavior, with flow curves fitted best by the Power Law model. The incorporation of CoFe<sub>2</sub>O<sub>4</sub> nanoparticles significantly improved the hydrogel’s elasticity and viscosity, as evidenced by a higher storage modulus (G′) compared to the loss modulus (G″) across all frequencies, indicating the elastic nature of the hydrogels. The decrease in complex viscosity with increasing frequency confirmed the pseudoplastic properties of the hydrogels, attributed to the random alignment of CoFe<sub>2</sub>O<sub>4</sub> nanoparticles within the matrix. Tan δ values were below unity at all tested frequencies, underscoring the hydrogels’ strong elastic properties. These findings highlight the effectiveness of rheological analysis in characterizing the viscoelastic behavior of polymer hydrogels, which can be tailored for various applications.</div></div>","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":"29 8","pages":"Pages 658-674"},"PeriodicalIF":1.7,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Preparation and characterization of fumed silica added PMMA denture base materials","authors":"Hakki Cenker Kucukesmen , Mehmet Fahri Sarac","doi":"10.1080/1023666X.2024.2410754","DOIUrl":"10.1080/1023666X.2024.2410754","url":null,"abstract":"<div><div>This study was carried out to investigate the chemical, mechanical, and structural properties of increasing amounts of fumed silica added to PMMA denture base material. The effect of adding fumed silica at three different concentrations (0.5%, 1%, and 2% by weight) to PMMA was studied using Fourier transform infrared spectroscopy (FTIR), dynamic mechanical analysis (DMA), density, flexural strength, hardness, atomic force microscopy (AFM), and scanning electron microscopy (SEM). The results showed that the highest flexural strength values (105.64 MPa) and hardness (20.07 microvickers) were obtained with 1% wt. of fumed silica material. According to DMA results, fumed silica samples containing 1% wt. had the highest energy storage (3.24 GPa at 30 °C) and glass transition temperature. As a result, fumed silica in PMMA denture base material reached its maximum saturation limit at 1% wt. A more brittle behavior was observed in samples containing 2% fumed silica, which accumulated on the surface, as confirmed by AFM. The molecular bonds at the resin-fumed silica interface weaken due to the agglomeration of fumed silica. Consequently, the flexural strength and hardness decrease, along with the glass transition temperature and storage modulus. The potential applications of this research are vast, inspiring further exploration and innovation in denture-based materials.</div></div>","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":"29 8","pages":"Pages 675-684"},"PeriodicalIF":1.7,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High-performance biodegradable triboelectric nanogenerators using CoFe2O4 filled poly (butylene adipate-co-terephthalate)","authors":"Vishnu Kadabahalli Thammannagowda , Kariyappa Gowda Guddenahalli Shivanna , Smitha Ankanahalli Shankaregowda , Prashantha Kalappa","doi":"10.1080/1023666X.2024.2410762","DOIUrl":"10.1080/1023666X.2024.2410762","url":null,"abstract":"<div><div>The hunt for sustainable and efficient energy harvesting and storage devices has driven significant interest in triboelectric nanogenerators (TENGs) as potential alternatives to traditional batteries for powering electronic devices. However, the development of biodegradable TENGs remains a formidable challenge. This study presents the preparation of a tribopositive material entirely composed of biodegradable poly(butylene adipate-co-terephthalate) (PBAT) polymer enhanced with CoFe<sub>2</sub>O<sub>4</sub> (CF) nanoparticles. The CF nanoparticles, synthesized via the combustion method, were incorporated into the PBAT matrix through solvent casting to form films with varied filler content (0.2, 0.4, 0.6, 0.8, and 1 g). The CF nanoparticles structural, surface, and electrical properties were characterized using XRD and FTIR spectroscopy. At the same time, the morphology of the nanomaterials and their composites was analyzed by scanning electron microscopy. Specifically, the 0.8 g PBAT-CF TENG demonstrated superior performance, achieving an output voltage of 45.45 V and a current of 4.5 µA. Subsequent electrical studies, including charging commercial capacitors (1.0 to 47 μF) and powering LEDs and calculators, underscored the device’s efficiency. The PBAT-CF TENG also effectively generated voltage and current signals from physical activities like walking and jumping. This innovative approach highlights the potential for biodegradable, high-performing, self-powered flexible electronics, and wearable devices, paving the way for sustainable technological advancements.</div></div>","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":"29 8","pages":"Pages 685-698"},"PeriodicalIF":1.7,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mechanical, Thermal, and Water Absorption Behavior of Ash Gourd (Benincasa Hispida) Peel Particles Filled Epoxy Composites","authors":"Amit Agarwal , Vikas Upadhyay","doi":"10.1080/1023666X.2024.2378890","DOIUrl":"10.1080/1023666X.2024.2378890","url":null,"abstract":"<div><div>Recently, bio-composites have attracted much attention due to their potential applications in various industries. The most notable benefits are the product’s low cost, biodegradability, lightweight, availability, and ability to solve environmental issues. The present research utilizes ash gourd (<em>Benincasa hispida</em>) peel, a food waste, as a filler material to produce epoxy (EP) composites. The effect of ash gourd peel particle percentage (ranging from 0 to 25 wt.%) was studied on the developed composites’ mechanical and thermal properties and water absorption behavior. The maximum tensile strength, flexural strength, and shore D hardness were 47.52 MPa, 2409.17 MPa, and 79.6respectively, when the ash gourd peel was 5% by weight in the composite. It was observed that the mechanical characteristics of manufactured bio-composites are negatively affected by the high concentration of ash gourd peel particles in the epoxy matrix. Also, increasing ash gourd peel particle fraction increases the water absorption of composites when immersed in distilled, sea, and tap water. The composite with 5% filler by weight absorbs water at a minimal rate when immersed in seawater. Thermogravimetric analysis was conducted to investigate the newly developed composite’s thermal behavior. In addition, a morphological examination of the fractured surfaces was carried out with assistance from a scanning electron microscope. The work presents ash gourd peel particles as the potential alternative to be used as filler in composites.</div></div>","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":"29 7","pages":"Pages 465-477"},"PeriodicalIF":1.7,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141807387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Umashankar , G. Kamala Vasanth , R. Krishna Prasad
{"title":"Micromechanical modeling, thermal, and dielectric studies of poly (methyl methacrylate)-barium titanate composites","authors":"K. Umashankar , G. Kamala Vasanth , R. Krishna Prasad","doi":"10.1080/1023666X.2024.2391802","DOIUrl":"10.1080/1023666X.2024.2391802","url":null,"abstract":"<div><div>Polymer composites containing poly (methyl methacrylate) (PMMA) and barium titanate (BaTiO<sub>3</sub>) were synthesized using the solution mixing method. The electrical conductivity of PMMA is 6 × 10<sup>−9</sup> S/cm, and adding 2% fillers reduces to 5 × 10<sup>−9</sup> S/cm. The melting point of PMMA is 373 °C, and adding 2% and 4% fillers increased it to 376 °C and 379 °C, respectively. The polymer chains become less mobile and block macromolecules on the filler surface. The modulus of elasticity and mechanical tensile stress of the polymer composites with a 5-wt% of BaTiO<sub>3</sub> are 759.3 MPa and 75.6 MPa, respectively. The breakdown strength of PMMA is 203 KV and reduces with the addition of 5% filler to 144 KV. The values of <em>E c</em>/<em>E m</em> evaluated using the Tsai-Pagano, Christensen-Waals, ROM, Mori-Tanaka, and Halpin-Tsai models underpredict the modulus compared to experimental <em>E c</em>/<em>E m</em> values. Fourier spectroscopy confirmed the presence of Ti-O and BaTiO<sub>3</sub> bonds in the polymer composite. Scanning electron microscope images reveal spherical aggregates of BaTiO<sub>3</sub> coated with PMMA and an interparticle network. The dielectric constant of PMMA is 3 and increased with the addition of 2% and 4% fillers to 4 and 4.3, respectively.</div></div>","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":"29 7","pages":"Pages 521-532"},"PeriodicalIF":1.7,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142359454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhanced performance in a NASICON-incorporated solid polymer electrolyte","authors":"Dharmendra Kumar , Shweta Mukherjee , Avirup Das","doi":"10.1080/1023666X.2024.2383460","DOIUrl":"10.1080/1023666X.2024.2383460","url":null,"abstract":"<div><div>In the present work, a novel ‘doped ceramic-polymer composite’-based solid polymer electrolytes (SPEs) has been synthesized using Zr (LAZTP) and Nb (LANbTP)-doped LATP as a ceramic filler and polyacrylonitrile (PAN) as a host polymer via the solution cast method. A series of SPEs with different ceramic loadings ranging from 10, 20, 30, 40, and 80 wt. % have been investigated using XRD, SEM, and impedance analysis. XRD spectra show the presence of crystalline ceramic peaks in composite solid polymer electrolyte. Further, the homogeneous distribution of the filler has been confirmed by SEM images. For SPEs, the highest conductivity of 5.31 × 10<sup>−5</sup> S cm<sup>−1</sup> has been obtained for PAN + LANbTP30 at room temperature. Whereas, the optimized conductivity for LATP-incorporated PAN shows 1.79 × 10<sup>−5</sup> S cm<sup>−1</sup>, and the LAZTP-incorporated sample shows a conductivity of 3.03 × 10<sup>−5</sup> S cm<sup>−1</sup> at room temperature. Also, LANbTP-contained SPE shows excellent voltage stability of 4.90 V w.r.t. pure PAN.</div></div>","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":"29 7","pages":"Pages 573-587"},"PeriodicalIF":1.7,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141926439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. M. Alotaibi , Reem Altuijri , A. Atta , E. Abdeltwab , M. M. Abdelhamied
{"title":"Fabrication, structure and optical characteristics of CuO/polymer nanocomposites materials for optical devices","authors":"B. M. Alotaibi , Reem Altuijri , A. Atta , E. Abdeltwab , M. M. Abdelhamied","doi":"10.1080/1023666X.2024.2397392","DOIUrl":"10.1080/1023666X.2024.2397392","url":null,"abstract":"<div><div>The films of P(4ClAni)/CuO, which formed of mixing poly 4-chloroaniline P(4ClAni) by CuO, were fabricated by the casting solution method. The XRD confirmed the successful prepration of the P(4ClAni)/CuO films. Additionally, the effect of CuO on the optical characteristics was determined. The CuO increased the refractive index from 1.09 for P(4ClAni) to 1.11 for P(4ClAni)/CuO-1, and 1.19 for P(4ClAni)/CuO-3, respectively, while the oscillation energy E<sub>0</sub> dropped from 4.29 eV for P(4ClAni) to 3.57 eV for P(4ClAni)/CuO-1, 3.12 eV for P(4ClAni)/CuO-2, and 3.06 eV for P(4ClAni)/CuO-3. The charge transfer between P(4ClAni) and CuO increased optical conductivity as the CuO ratios increased. This suggests that modifications in the electronic structure of the composite due to the interactions between P(4ClAni) and CuO. Also, the plasma frequency increased from 0.87 x 10<sup>12</sup> s<sup>−1</sup> to 2.32 x 10<sup>12</sup> s<sup>−1</sup>. These changes in optical parameters occurred when the polarization of the P(4ClAni)/CuO was altered. The study elucidated the advantages of incorporating CuO nanoparticles as fillers in improving the properties of P(4ClAni) structures. The obtained results indicate the P(4ClAni)/CuO composites were sucessfuly fabricated with novel characteristics that can be applied in flexible optical devices.</div></div>","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":"29 7","pages":"Pages 562-572"},"PeriodicalIF":1.7,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142359456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}