International Journal of Metalcasting最新文献

筛选
英文 中文
Effect of Austenitization Time on Corrosion and Wear Resistance in Austempered Ductile Iron 奥氏体化时间对奥氏体回火球墨铸铁耐腐蚀性和耐磨性的影响
IF 2.6 3区 材料科学
International Journal of Metalcasting Pub Date : 2024-09-18 DOI: 10.1007/s40962-024-01438-x
F. Montes González, A. Magaña Hernández, A. Miranda Pérez, E. Almanza Casas, S. Luna Alvarez, F. García Vazquez
{"title":"Effect of Austenitization Time on Corrosion and Wear Resistance in Austempered Ductile Iron","authors":"F. Montes González, A. Magaña Hernández, A. Miranda Pérez, E. Almanza Casas, S. Luna Alvarez, F. García Vazquez","doi":"10.1007/s40962-024-01438-x","DOIUrl":"https://doi.org/10.1007/s40962-024-01438-x","url":null,"abstract":"<p>The temperature and time of austenitization are of great practical importance during the austempering heat treatment of ductile iron, as these factors influence the transformations in the solid state, modifying the matrix microstructure and the resulting mechanical properties of the material obtained after subsequent austempering. The objective of this research is to investigate the influence of austenitization time on the microstructural characteristics, wear, and corrosion rate of ductile iron subjected to an austenitization heat treatment at 1050 °C for 120, 180, and 240 min, followed by austempering at 350 °C for 60 min. To assess the corrosion and wear resistance of the samples, potentiodynamic tests in a 3.5% NaCl solution and pin-on-disk tribological tests were, respectively, conducted. The results demonstrated that increasing the austenitization time results in ausferritic microstructures with a higher content of carbon-rich austenite accompanied by a higher content of carbon, and lower microstructural heterogeneities due to the last to freeze zones in ductile iron. The material's corrosion and wear resistance improved as the austenitization time was increased.</p>","PeriodicalId":14231,"journal":{"name":"International Journal of Metalcasting","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142255216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From the Editor 编辑的话
IF 2.6 3区 材料科学
International Journal of Metalcasting Pub Date : 2024-09-14 DOI: 10.1007/s40962-024-01444-z
Thomas Prucha
{"title":"From the Editor","authors":"Thomas Prucha","doi":"10.1007/s40962-024-01444-z","DOIUrl":"https://doi.org/10.1007/s40962-024-01444-z","url":null,"abstract":"","PeriodicalId":14231,"journal":{"name":"International Journal of Metalcasting","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142268907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Simulation and Experimental Investigation of Microstructure Evolution and Flow Behavior in the Rheological Squeeze Casting Process of A356 Alloy A356 合金流变挤压铸造过程中显微组织演变和流动行为的数值模拟和实验研究
IF 2.6 3区 材料科学
International Journal of Metalcasting Pub Date : 2024-09-11 DOI: 10.1007/s40962-024-01450-1
Wentao Xiong, Yichao Ding, Zhihua Hu, Binghua Jiang, Mengjue Li, Quan Zou
{"title":"Numerical Simulation and Experimental Investigation of Microstructure Evolution and Flow Behavior in the Rheological Squeeze Casting Process of A356 Alloy","authors":"Wentao Xiong, Yichao Ding, Zhihua Hu, Binghua Jiang, Mengjue Li, Quan Zou","doi":"10.1007/s40962-024-01450-1","DOIUrl":"https://doi.org/10.1007/s40962-024-01450-1","url":null,"abstract":"<p>This paper carried out numerical simulations of the entire process of rheological squeeze casting of A356 alloy, evaluated the impact of various combinations of forming process parameters on the temperature field, flow field, and solid-phase fraction of A356 semi-solid slurry, and studied the influence of die temperature (°C) and filling speed (mm/s) on the microstructure formation mechanism of A356 alloy rheological squeeze castings. The research revealed that A356 alloy castings with diverse microstructural features can be achieved by solely controlling the rheological squeeze casting process parameters, without the use of additional heterogeneous nucleating agents or heat treatment. Through combined numerical simulation and experimental results, the optimal rheological squeeze casting process parameters were determined: filling speed of 20 mm/s and mold temperature of 350 °C. It was observed that with the simultaneous increase of mold temperature and filling speed, the average equivalent diameter of the <i>α</i>-Al phase significantly increased from 26.18 μm to 44.27 μm, the uniformity of the eutectic structure distribution was greatly improved, and it was also found that the excessively high filling speed is a critical factor contributing to the coexistence of the script-shaped <i>π</i>-Al<sub>8</sub>FeMg<sub>3</sub>Si6 phase and the undecomposed the needle-like <i>β</i>-Al<sub>5</sub>FeSi phase.</p>","PeriodicalId":14231,"journal":{"name":"International Journal of Metalcasting","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Effect of N Content on the Microstructure and Wear Resistance of Improved High-Carbon Chromium Bearing Steel 氮含量对改进型高碳铬轴承钢显微组织和耐磨性的影响
IF 2.6 3区 材料科学
International Journal of Metalcasting Pub Date : 2024-08-29 DOI: 10.1007/s40962-024-01443-0
Jincheng Liao, Jiamin Song, Yitao Yang
{"title":"The Effect of N Content on the Microstructure and Wear Resistance of Improved High-Carbon Chromium Bearing Steel","authors":"Jincheng Liao, Jiamin Song, Yitao Yang","doi":"10.1007/s40962-024-01443-0","DOIUrl":"https://doi.org/10.1007/s40962-024-01443-0","url":null,"abstract":"<p>The impact of varying nitrogen (N) contents (65 ppm, 90 ppm, 115 ppm, 140 ppm) on the microstructure and wear resistance of high-carbon chromium bearing steel enriched with niobium was explored through optical microscopy (OM), scanning electron microscopy (SEM), electrolytic extraction, X-ray diffraction (XRD), and room temperature dry sliding friction and wear tests. The findings indicate that an optimal nitrogen addition can effectively refine grains and precipitates. Increasing nitrogen content led to a rise in NbCrN formation, with nitrogen increasingly substituting for carbon in NbC, resulting in the creation of Nb(C,N). The niobium-containing precipitates progressively assumed elongated shapes. At a nitrogen level of 115 ppm, the experimental steel demonstrated superior wear resistance, primarily due to the Mechanical Mixture Layer (MML) mitigating metal-to-metal friction and the hard precipitates of niobium and nitrogen in the matrix obstructing abrasive grain displacement. Consequently, the wear mechanism evolved from abrasive to oxidized adhesive wear.</p>","PeriodicalId":14231,"journal":{"name":"International Journal of Metalcasting","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Classification of Refractory Coatings in Foundries: A VPCA-Based Machine Learning Approach 铸造厂耐火涂层的强化分类:基于 VPCA 的机器学习方法
IF 2.6 3区 材料科学
International Journal of Metalcasting Pub Date : 2024-08-24 DOI: 10.1007/s40962-024-01427-0
Ronit Shetty, Ahmad Al Majali, Lee Wells
{"title":"Enhanced Classification of Refractory Coatings in Foundries: A VPCA-Based Machine Learning Approach","authors":"Ronit Shetty, Ahmad Al Majali, Lee Wells","doi":"10.1007/s40962-024-01427-0","DOIUrl":"https://doi.org/10.1007/s40962-024-01427-0","url":null,"abstract":"<p>This paper introduces a thorough approach for classifying refractory coatings used on chemically bonded sand according to their thickness, which is essential for monitoring mold and core coatings in foundries. The method combines feature extraction through vectorized principal component analysis (VPCA) with classification modeling using a machine learning algorithm. The study examines five different scenarios, which involve the utilization of raw axial, radial, and temperature data, as well as the use of scalar properties. Additionally, the study involves extracting features from the first two approaches and training on the complete dataset. An assessment of performance is carried out, showcasing the strong ability to classify accurately across all levels of coating thickness. In addition, Hotelling's T-squared statistics are used to identify changes in the process, offering valuable information about the structure and distinctiveness of the data classes. This study demonstrates the efficacy of feature extraction methods and machine learning algorithms in accurately categorizing coating thicknesses, providing practical solutions for applications in the foundry industry. This systematic methodology not only improves the comprehensibility and effectiveness of classification models but also offers vital understanding into process monitoring and identification of abnormalities within intricate datasets.</p>","PeriodicalId":14231,"journal":{"name":"International Journal of Metalcasting","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Spheroidization and Inoculation on the Early Solidification Steps of Hypereutectic Cast Irons 球化和接种对超共晶铸铁早期凝固步骤的影响
IF 2.6 3区 材料科学
International Journal of Metalcasting Pub Date : 2024-08-23 DOI: 10.1007/s40962-024-01434-1
Patrik Popelar, Jacques Lacaze
{"title":"Effect of Spheroidization and Inoculation on the Early Solidification Steps of Hypereutectic Cast Irons","authors":"Patrik Popelar, Jacques Lacaze","doi":"10.1007/s40962-024-01434-1","DOIUrl":"https://doi.org/10.1007/s40962-024-01434-1","url":null,"abstract":"<p>Compacted and spheroidal graphite silicon cast irons generally have slightly hypereutectic compositions when referred to the equilibrium phase diagram. Previous studies have shown that the thermal analysis of these melts often exhibits misleading characteristics that could prevent proper process control. It was the aim of the present work to provide new results, taking into account the carbon equivalent as well as spheroidization and inoculation levels. Overall, the features of slightly and highly hypereutectic melts deduced from previous studies were confirmed, while additional information was obtained concerning the effect of spheroidization and inoculation levels.</p>","PeriodicalId":14231,"journal":{"name":"International Journal of Metalcasting","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of Microstructural, Mechanical and Corrosion Properties of Biodegradable Mg–Sn–Y Alloys 可生物降解 Mg-Sn-Y 合金的微结构、机械和腐蚀特性研究
IF 2.6 3区 材料科学
International Journal of Metalcasting Pub Date : 2024-08-23 DOI: 10.1007/s40962-024-01429-y
Selma Özarslan, Hüseyin Şevik, İdris Sorar
{"title":"Investigation of Microstructural, Mechanical and Corrosion Properties of Biodegradable Mg–Sn–Y Alloys","authors":"Selma Özarslan, Hüseyin Şevik, İdris Sorar","doi":"10.1007/s40962-024-01429-y","DOIUrl":"https://doi.org/10.1007/s40962-024-01429-y","url":null,"abstract":"<p>In this study, biodegradable magnesium alloys were produced using the high pressure die casting (HPDC) technique. Effects of Y addition on microstructure, mechanical properties and corrosion behaviors of as-cast Mg–4Sn–xY (<i>x</i> = 0, 1, 2, 4 wt.%) alloys are investigated. The surface morphology of the alloys was examined using field emission scanning electron microscopy (FE-SEM) and the microstructure was examined using energy dispersive spectroscopy (EDS), respectively. Tensile and hardness tests were carried out to examine the mechanical properties. Microstructural studies have shown that the addition of yttrium causes a reduction in the grain size of the alloy and the formation of Sn<sub>3</sub>Y<sub>5</sub> and MgSnY intermetallic compounds with high melting temperature, as well as Mg<sub>2</sub>Sn intermetallic. While, the maximum tensile strength value is achieved with the addition of 1% yttrium by weight, the increase in yield strength, elongation percentage and hardness values continue with the addition of more yttrium. Corrosion tests have shown that the addition of yttrium to the Mg–Sn alloy increases the corrosion resistance of the alloys due to microstructural changes. The Mg–4Sn–4Y alloy is found to be a promising biodegradable magnesium alloy especially for orthopedic applications.</p>","PeriodicalId":14231,"journal":{"name":"International Journal of Metalcasting","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Case Studies Experience in Using 3D Sand Printing to Produce Molds for New and Replacement Cast Components 案例研究 使用三维砂型打印技术为新铸件和替换铸件制作模具的经验
IF 2.6 3区 材料科学
International Journal of Metalcasting Pub Date : 2024-08-22 DOI: 10.1007/s40962-024-01426-1
John T. H. Pearce, Nattinee Valun-araya, Otis Chantrarasukkasem, Sankum Nusen
{"title":"Case Studies Experience in Using 3D Sand Printing to Produce Molds for New and Replacement Cast Components","authors":"John T. H. Pearce, Nattinee Valun-araya, Otis Chantrarasukkasem, Sankum Nusen","doi":"10.1007/s40962-024-01426-1","DOIUrl":"https://doi.org/10.1007/s40962-024-01426-1","url":null,"abstract":"<p>The use of 3D sand printing (3DSP) to produce both cores and mold assemblies is of growing importance in the castings industry. This additive process can provide near-limitless freedom in design. Heating is not normally required, and since it is a patternless process, mold parts are free from the dimensional play variations that can arise during pattern removal in conventional molding. Patterns or core boxes are not needed such that 3DSP can significantly reduce production lead times. Experience in Thailand has shown that 3DSP technology is especially useful in solving problems in part replacement since broken or worn-out components can be replaced within relatively short time periods. This has proved invaluable in the maintenance of older or imported equipment through the supply of replacement parts which are no longer in production or not readily obtained. When drawings are not available, 3D scanning of the old parts needing replacement can provide the data for 3DSP mold production to cast their replacements. This paper considers how the 3DSP route is proving its effectiveness in Thailand for the commercial production of both new and replacement parts for marine applications such as propellers, pumps and other components.</p>","PeriodicalId":14231,"journal":{"name":"International Journal of Metalcasting","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of Corrosion and Mechanical Properties of as-Cast Mg-3Sn-2Y-1Zn-0.6Ca Alloy 铸态 Mg-3Sn-2Y-1Zn-0.6Ca 合金的腐蚀和机械性能研究
IF 2.6 3区 材料科学
International Journal of Metalcasting Pub Date : 2024-08-21 DOI: 10.1007/s40962-024-01425-2
İlker Özkan, Güven Yarkadaş
{"title":"Investigation of Corrosion and Mechanical Properties of as-Cast Mg-3Sn-2Y-1Zn-0.6Ca Alloy","authors":"İlker Özkan, Güven Yarkadaş","doi":"10.1007/s40962-024-01425-2","DOIUrl":"https://doi.org/10.1007/s40962-024-01425-2","url":null,"abstract":"<p>In this investigation, a pure magnesium ingot, tin, yttrium, zinc, and calcium granules were used to create the alloy Mg-3Sn-2Y-1Zn-0.6Ca. An electric resistance furnace was used to melt the alloy, and a gas combination with 4% sulfur hexafluoride and 96% argon was utilized to provide a protective environment. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) were used to analyze the generated alloy’s phase and explore its microstructure. By using nanoindentation analysis, the nanohardness value (HN) and the decreased elastic modulus (Er) of the alloy were calculated. The alloy underwent tensile testing at body temperature of 36.5 °C. Immersion and potentiodynamic polarization experiments were performed in a salt solution at 36.5 °C to measure the alloy’s corrosion resistance. As a result of corrosion tests, the steady-state corrosion potential (Ecorr) and polarization parameters of the alloy were obtained.</p>","PeriodicalId":14231,"journal":{"name":"International Journal of Metalcasting","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on the Effect and Mechanism of Mold Temperature and Ceramic Particle Alumina on the Strength and Water Solubility of NaCl–Na2CO3 and NaCl–Na2SO4 Composite Cores 模具温度和陶瓷颗粒氧化铝对 NaCl-Na2CO3 和 NaCl-Na2SO4 复合芯材强度和水溶性的影响及机理研究
IF 2.6 3区 材料科学
International Journal of Metalcasting Pub Date : 2024-08-20 DOI: 10.1007/s40962-024-01433-2
Xiaorou Ning, Keke Zuo, Yang Li, Wanting Guo, Xiao Peng, Jianguo Su, Lai Song, Weihua Liu, Tongyu Liu, Yuyan Ren
{"title":"Study on the Effect and Mechanism of Mold Temperature and Ceramic Particle Alumina on the Strength and Water Solubility of NaCl–Na2CO3 and NaCl–Na2SO4 Composite Cores","authors":"Xiaorou Ning, Keke Zuo, Yang Li, Wanting Guo, Xiao Peng, Jianguo Su, Lai Song, Weihua Liu, Tongyu Liu, Yuyan Ren","doi":"10.1007/s40962-024-01433-2","DOIUrl":"https://doi.org/10.1007/s40962-024-01433-2","url":null,"abstract":"<p>In the process of pouring salt cores, it is crucial to select the appropriate mold temperature, which is essential for the shaping and strength of the salt cores. Additionally, salt cores need to undergo water-soluble cleaning after casting, which has certain requirements for their water solubility. In order to obtain composite water-soluble salt cores with a certain strength suitable for high-pressure die casting processes, sodium chloride, sodium sulfate, and sodium carbonate are used as salt core materials, with ceramic alumina particles as reinforcement materials. The influence of alumina on the performance of NaCl–Na<sub>2</sub>CO<sub>3</sub> and NaCl–Na<sub>2</sub>SO<sub>4</sub> composite salt cores was studied. Through molecular dynamics simulation calculations, the change curve of the adhesion work of salt cores at different mold temperatures was analyzed. Combining XRD detection results and comparative analysis of actual salt core flexural strength, it was found that sodium aluminate generated at high temperatures has a strong interface binding ability with other components in the salt core, which is a key factor affecting the strength of the salt core. Through experimental research combined with simulated calculations of water molecule adsorption at different salt core interfaces, it was found that with increasing water temperature, the water adsorption capacity of NaCl–Na<sub>2</sub>CO<sub>3</sub> and NaCl–Na<sub>2</sub>SO<sub>4</sub> salt cores gradually increases, leading to an accelerated water solubility rate. The addition of Al<sub>2</sub>O<sub>3</sub> reduces the water solubility rate of NaCl–Na<sub>2</sub>CO<sub>3</sub> and NaCl–Na<sub>2</sub>SO<sub>4</sub> salt cores, but significantly improves their strength. The addition of Al<sub>2</sub>O<sub>3</sub> enhances the NaCl–Na<sub>2</sub>CO<sub>3</sub> salt core due to the formation of highly water-soluble sodium aluminate, resulting in a certain improvement in water solubility rate.</p>","PeriodicalId":14231,"journal":{"name":"International Journal of Metalcasting","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信