{"title":"可生物降解 Mg-Sn-Y 合金的微结构、机械和腐蚀特性研究","authors":"Selma Özarslan, Hüseyin Şevik, İdris Sorar","doi":"10.1007/s40962-024-01429-y","DOIUrl":null,"url":null,"abstract":"<p>In this study, biodegradable magnesium alloys were produced using the high pressure die casting (HPDC) technique. Effects of Y addition on microstructure, mechanical properties and corrosion behaviors of as-cast Mg–4Sn–xY (<i>x</i> = 0, 1, 2, 4 wt.%) alloys are investigated. The surface morphology of the alloys was examined using field emission scanning electron microscopy (FE-SEM) and the microstructure was examined using energy dispersive spectroscopy (EDS), respectively. Tensile and hardness tests were carried out to examine the mechanical properties. Microstructural studies have shown that the addition of yttrium causes a reduction in the grain size of the alloy and the formation of Sn<sub>3</sub>Y<sub>5</sub> and MgSnY intermetallic compounds with high melting temperature, as well as Mg<sub>2</sub>Sn intermetallic. While, the maximum tensile strength value is achieved with the addition of 1% yttrium by weight, the increase in yield strength, elongation percentage and hardness values continue with the addition of more yttrium. Corrosion tests have shown that the addition of yttrium to the Mg–Sn alloy increases the corrosion resistance of the alloys due to microstructural changes. The Mg–4Sn–4Y alloy is found to be a promising biodegradable magnesium alloy especially for orthopedic applications.</p>","PeriodicalId":14231,"journal":{"name":"International Journal of Metalcasting","volume":"20 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Microstructural, Mechanical and Corrosion Properties of Biodegradable Mg–Sn–Y Alloys\",\"authors\":\"Selma Özarslan, Hüseyin Şevik, İdris Sorar\",\"doi\":\"10.1007/s40962-024-01429-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, biodegradable magnesium alloys were produced using the high pressure die casting (HPDC) technique. Effects of Y addition on microstructure, mechanical properties and corrosion behaviors of as-cast Mg–4Sn–xY (<i>x</i> = 0, 1, 2, 4 wt.%) alloys are investigated. The surface morphology of the alloys was examined using field emission scanning electron microscopy (FE-SEM) and the microstructure was examined using energy dispersive spectroscopy (EDS), respectively. Tensile and hardness tests were carried out to examine the mechanical properties. Microstructural studies have shown that the addition of yttrium causes a reduction in the grain size of the alloy and the formation of Sn<sub>3</sub>Y<sub>5</sub> and MgSnY intermetallic compounds with high melting temperature, as well as Mg<sub>2</sub>Sn intermetallic. While, the maximum tensile strength value is achieved with the addition of 1% yttrium by weight, the increase in yield strength, elongation percentage and hardness values continue with the addition of more yttrium. Corrosion tests have shown that the addition of yttrium to the Mg–Sn alloy increases the corrosion resistance of the alloys due to microstructural changes. The Mg–4Sn–4Y alloy is found to be a promising biodegradable magnesium alloy especially for orthopedic applications.</p>\",\"PeriodicalId\":14231,\"journal\":{\"name\":\"International Journal of Metalcasting\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Metalcasting\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s40962-024-01429-y\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Metalcasting","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40962-024-01429-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Investigation of Microstructural, Mechanical and Corrosion Properties of Biodegradable Mg–Sn–Y Alloys
In this study, biodegradable magnesium alloys were produced using the high pressure die casting (HPDC) technique. Effects of Y addition on microstructure, mechanical properties and corrosion behaviors of as-cast Mg–4Sn–xY (x = 0, 1, 2, 4 wt.%) alloys are investigated. The surface morphology of the alloys was examined using field emission scanning electron microscopy (FE-SEM) and the microstructure was examined using energy dispersive spectroscopy (EDS), respectively. Tensile and hardness tests were carried out to examine the mechanical properties. Microstructural studies have shown that the addition of yttrium causes a reduction in the grain size of the alloy and the formation of Sn3Y5 and MgSnY intermetallic compounds with high melting temperature, as well as Mg2Sn intermetallic. While, the maximum tensile strength value is achieved with the addition of 1% yttrium by weight, the increase in yield strength, elongation percentage and hardness values continue with the addition of more yttrium. Corrosion tests have shown that the addition of yttrium to the Mg–Sn alloy increases the corrosion resistance of the alloys due to microstructural changes. The Mg–4Sn–4Y alloy is found to be a promising biodegradable magnesium alloy especially for orthopedic applications.
期刊介绍:
The International Journal of Metalcasting is dedicated to leading the transfer of research and technology for the global metalcasting industry. The quarterly publication keeps the latest developments in metalcasting research and technology in front of the scientific leaders in our global industry throughout the year. All papers published in the the journal are approved after a rigorous peer review process. The editorial peer review board represents three international metalcasting groups: academia (metalcasting professors), science and research (personnel from national labs, research and scientific institutions), and industry (leading technical personnel from metalcasting facilities).