John T. H. Pearce, Nattinee Valun-araya, Otis Chantrarasukkasem, Sankum Nusen
{"title":"Case Studies Experience in Using 3D Sand Printing to Produce Molds for New and Replacement Cast Components","authors":"John T. H. Pearce, Nattinee Valun-araya, Otis Chantrarasukkasem, Sankum Nusen","doi":"10.1007/s40962-024-01426-1","DOIUrl":null,"url":null,"abstract":"<p>The use of 3D sand printing (3DSP) to produce both cores and mold assemblies is of growing importance in the castings industry. This additive process can provide near-limitless freedom in design. Heating is not normally required, and since it is a patternless process, mold parts are free from the dimensional play variations that can arise during pattern removal in conventional molding. Patterns or core boxes are not needed such that 3DSP can significantly reduce production lead times. Experience in Thailand has shown that 3DSP technology is especially useful in solving problems in part replacement since broken or worn-out components can be replaced within relatively short time periods. This has proved invaluable in the maintenance of older or imported equipment through the supply of replacement parts which are no longer in production or not readily obtained. When drawings are not available, 3D scanning of the old parts needing replacement can provide the data for 3DSP mold production to cast their replacements. This paper considers how the 3DSP route is proving its effectiveness in Thailand for the commercial production of both new and replacement parts for marine applications such as propellers, pumps and other components.</p>","PeriodicalId":14231,"journal":{"name":"International Journal of Metalcasting","volume":"32 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Metalcasting","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40962-024-01426-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The use of 3D sand printing (3DSP) to produce both cores and mold assemblies is of growing importance in the castings industry. This additive process can provide near-limitless freedom in design. Heating is not normally required, and since it is a patternless process, mold parts are free from the dimensional play variations that can arise during pattern removal in conventional molding. Patterns or core boxes are not needed such that 3DSP can significantly reduce production lead times. Experience in Thailand has shown that 3DSP technology is especially useful in solving problems in part replacement since broken or worn-out components can be replaced within relatively short time periods. This has proved invaluable in the maintenance of older or imported equipment through the supply of replacement parts which are no longer in production or not readily obtained. When drawings are not available, 3D scanning of the old parts needing replacement can provide the data for 3DSP mold production to cast their replacements. This paper considers how the 3DSP route is proving its effectiveness in Thailand for the commercial production of both new and replacement parts for marine applications such as propellers, pumps and other components.
期刊介绍:
The International Journal of Metalcasting is dedicated to leading the transfer of research and technology for the global metalcasting industry. The quarterly publication keeps the latest developments in metalcasting research and technology in front of the scientific leaders in our global industry throughout the year. All papers published in the the journal are approved after a rigorous peer review process. The editorial peer review board represents three international metalcasting groups: academia (metalcasting professors), science and research (personnel from national labs, research and scientific institutions), and industry (leading technical personnel from metalcasting facilities).