International Journal of Renewable Energy Development最新文献

筛选
英文 中文
Assessing the feasibility of gray, blue, and green ammonia productions in Indonesia: A techno-economic and environmental perspective 评估印尼灰氨、蓝氨和绿氨生产的可行性:技术经济和环境视角
International Journal of Renewable Energy Development Pub Date : 2023-09-25 DOI: 10.14710/ijred.2023.58035
Martin Tjahjono, Isabella Stevani, Gracheilla A Siswanto, Arief Adhitya, Iskandar Halim
{"title":"Assessing the feasibility of gray, blue, and green ammonia productions in Indonesia: A techno-economic and environmental perspective","authors":"Martin Tjahjono, Isabella Stevani, Gracheilla A Siswanto, Arief Adhitya, Iskandar Halim","doi":"10.14710/ijred.2023.58035","DOIUrl":"https://doi.org/10.14710/ijred.2023.58035","url":null,"abstract":"Ammonia, owing to its carbon-free attributes, stands as a promising alternative for replacing fossil-based fuels. This study investigates the techno-economic and environmental aspects of gray, blue, and green ammonia production in Indonesia. In this regard, a spreadsheet-based decision support system has been developed to analyze the levelized cost of each mode of ammonia production and their cost sensitivity across various parameters. The results of the analysis show a levelized cost of gray ammonia of $297 (USD) per ton, which is strongly affected by natural gas prices and carbon taxation. Blue ammonia emerges as the most stable production option with a levelized cost of $390 per ton, impacted by natural gas prices and the expenses associated with carbon sequestration. On the other hand, the levelized cost of green ammonia varies between $696 to $1,024 per ton and is predominantly influenced by the choice of electrolyzers, the cost of renewable energy sources, and maintenance and operational expenditures. Furthermore, the study reveals that gray and blue ammonia production result in emissions of 2.73 and 0.28 tons of CO2 equivalent per ton of ammonia, respectively, while in-situ carbon emissions from green ammonia can be considered negligible. Overall, this study underscores the potential of implementing green ammonia production utilizing geothermal or hydropower renewable energy resources as viable solutions for decarbonizing the power, industry, and transport sectors in Indonesia. Several policy recommendations aimed at overcoming existing barriers to the development of green ammonia plants in the country are also provided.","PeriodicalId":14200,"journal":{"name":"International Journal of Renewable Energy Development","volume":"63 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135865773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking Africa’s solar and wind energy potential: A panel data analysis on the determinants of the production of electricity through solar and wind energy 释放非洲的太阳能和风能潜力:关于太阳能和风能发电决定因素的面板数据分析
International Journal of Renewable Energy Development Pub Date : 2023-09-21 DOI: 10.14710/ijred.2023.52563
Martina Gintarė De Vries
{"title":"Unlocking Africa’s solar and wind energy potential: A panel data analysis on the determinants of the production of electricity through solar and wind energy","authors":"Martina Gintarė De Vries","doi":"10.14710/ijred.2023.52563","DOIUrl":"https://doi.org/10.14710/ijred.2023.52563","url":null,"abstract":"With growing global concerns about and attention drawn to climate change, there is a pressing need to transition towards sustainable practices to live more harmoniously with the environment. To mitigate future climate changes, many support and pursue the uptake of renewable energy to slowly shift to a more electricity powered world. Africa, richly endowed with the potential of solar and wind, stands at a pivotal point with the opportunity to develop through electricity generated by renewable. Therefore, this research delves into the complexity of 25 factors influencing the production of solar and wind-powered electricity within the continent. Through a panel data analysis conducted for the years of 2010 till 2019, the study identifies several determinants to have positive and negative effects. Results highlight the intertwined nature of regional challenges and opportunities, emphasizing that political stability, socio-economic dynamics, sound national strategies, and environmental and international commitments play pivotal roles in determining the trajectory of solar and wind energy integration in Africa’s electricity mix. Notably the study underscores that a uniform approach across Africa is insufficient, instead tailored national and foreign strategies based on regional specifics found within this study are imperative for maximizing renewable energy adoption.","PeriodicalId":14200,"journal":{"name":"International Journal of Renewable Energy Development","volume":"125 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136238282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing the energy efficiency of fossil fuel in ASEAN 评估东盟化石燃料的能源效率
International Journal of Renewable Energy Development Pub Date : 2023-09-15 DOI: 10.14710/ijred.2023.57601
Sharifah Aishah Syed Ali, Ahmad Shafiq Abdul Rahman, Muhamad Fathul Naim Mohamad, Latifah Sarah Supian, Haliza Mohd Zahari, Mohd Norsyarizad Razali
{"title":"Assessing the energy efficiency of fossil fuel in ASEAN","authors":"Sharifah Aishah Syed Ali, Ahmad Shafiq Abdul Rahman, Muhamad Fathul Naim Mohamad, Latifah Sarah Supian, Haliza Mohd Zahari, Mohd Norsyarizad Razali","doi":"10.14710/ijred.2023.57601","DOIUrl":"https://doi.org/10.14710/ijred.2023.57601","url":null,"abstract":"The world's industries, transportation systems, and households rely heavily on fossil fuels despite their limited availability and high carbon content. Therefore, it is of the utmost importance to improve fossil fuel energy efficiency in order to facilitate the shift towards a sustainable energy system with reduced greenhouse gas emissions. This paper employs a slacks-based measure network data envelopment analysis model with undesirable outputs to assess the efficiencies of fossil fuel energy in the Association of Southeast Asian Nations (ASEAN) countries during a span of seven years, specifically from 2015 to 2021. The inclusion of undesirable outputs in this study is important because it allows for a more realistic assessment of efficiency by considering factors like CO2 emissions, which are undesirable outcomes associated with fossil fuel use. The datasets utilised in this study are sourced from the U.S. Energy Information Administration and the open data website of Our World in Data. Based on the findings, it can be observed that Singapore and the Philippines have demonstrated outstanding performance in maximising the utilisation of fossil fuels. In contrast, Myanmar exhibits the lowest level of efficiency in this analysis. By identifying top-performing countries in terms of fossil fuel efficiency, it is possible to implement measures to boost efficiency in under-performing countries. This can be achieved through the promotion and adoption of cleaner energy alternatives, specifically renewable energy sources that exhibit a low or negligible carbon footprint. These findings offer significant contributions to policymakers exploring sustainable energy usage, environmental stewardship, and the formulation and execution of comprehensive strategies that aim to mitigate carbon dioxide emissions arising from the consumption of fossil fuels in the ASEAN region.","PeriodicalId":14200,"journal":{"name":"International Journal of Renewable Energy Development","volume":"86 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135485119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of the non-uniform combustion core shape on the biochar production characteristics of the household biomass gasifier stove 燃烧芯形状不均匀对家用生物质气化炉产炭特性的影响
International Journal of Renewable Energy Development Pub Date : 2023-09-12 DOI: 10.14710/ijred.2023.56575
Somchet Chaiyalap, Ritthikrai Chai-ngam, Juthaporn Saengprajak, Jenjira Piamdee, Apipong Putkham, Arnusorn Saengprajak
{"title":"Effect of the non-uniform combustion core shape on the biochar production characteristics of the household biomass gasifier stove","authors":"Somchet Chaiyalap, Ritthikrai Chai-ngam, Juthaporn Saengprajak, Jenjira Piamdee, Apipong Putkham, Arnusorn Saengprajak","doi":"10.14710/ijred.2023.56575","DOIUrl":"https://doi.org/10.14710/ijred.2023.56575","url":null,"abstract":"The global demand for biochar in agricultural and carbon sequestration applications is increasing; nevertheless, biochar production using the 50-liter household biomass gasifier stove (50L-HBGS) in Thailand found major issues that need to be improved. The objective of this study was to study the effects of the airflow in the non-uniform combustion core shape (NCCS) on the biochar production characteristic of the 50L-HBGS. The new design of the NCCS was constructed and studied to replace the existing combustion core shape (ECCS) at Mahasarakham University. The height, air inlet, and air outlet diameters of the NCCS were designed at 45, 24, and 11.4 cm, respectively. The NCCS with 21 holes of the pyrolysis gas outlet, a diameter of 4 mm for each, was integrated into the 50L-HBGS and performed comparative tests to the ECCS using 9 kg of bamboo wood chunks in three consecutive experiments. The airflow and the combustion behavior were studied through the stove temperature profiles, which were recorded every 5 minutes using a digital data logger. The biochar products were studied using the scanning electron microscope (SEM) with the energy dispersive x-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), and the proximate analysis technique. The study indicated that the 50L-HBGS with the NCCS made significantly improved the airflow rates in the combustion core, resulting in better continuous burning during the ignition state than with the ECCS. Moreover, the pyrolysis temperatures were significantly improved, it was provided temperatures during the pyrolysis process reached higher than 500 oC, resulting in the liquid tar being removed and no unburned wood chunks remaining at the end. The characterization result demonstrated that the 50L-HBGS with the NCCS had created biochar within a range of micropore and macrospore sizes and high fixed carbon content, which could be advantageously used for different agricultural and carbon sequestration applications.","PeriodicalId":14200,"journal":{"name":"International Journal of Renewable Energy Development","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135887668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance analysis of hybrid PV-diesel-storage system in AGRS, Hassi R’mel Algeria 阿尔及利亚Hassi R 'mel AGRS光伏-柴油混合储能系统性能分析
International Journal of Renewable Energy Development Pub Date : 2023-09-05 DOI: 10.14710/ijred.2023.54072
Ahssen Mahmoudi, Amina Manel Bouaziz, Mohamed Najib Bouaziz, Djohra Saheb-Koussa
{"title":"Performance analysis of hybrid PV-diesel-storage system in AGRS, Hassi R’mel Algeria","authors":"Ahssen Mahmoudi, Amina Manel Bouaziz, Mohamed Najib Bouaziz, Djohra Saheb-Koussa","doi":"10.14710/ijred.2023.54072","DOIUrl":"https://doi.org/10.14710/ijred.2023.54072","url":null,"abstract":"The main research paper focuses on the optimal hybrid system using HOMER software in the central plant of Hassi R’mel. Indeed, the system is composed of PV panels, a battery bank, and a diesel engine, all of which are used to supply an industrial load. Hence, the present work proposes a solution to optimize the power generated by the power sources, maximize the photovoltaic source use, and minimize the use of the battery bank and the diesel generator. Moreover, the solution aims to guarantee the safe operation of the system components and continuity in the load power supply. These objectives are performed by the minimization of a cost function, in which the power generation cost, the energetic balance, and the environmental parameters are taken into consideration. Among the five solutions, the most optimal system obtained is PV/Diesel/batteries /Grid. This system consists of 1200 KW PV, an 1100 KW diesel generator, 800 units of battery, and an 1100 KW converter. Therefore, to supply the station with 49% of electricity by PV and 51% by diesel while the reduction of emissions is 60%, and 708020 liters of diesel is saved. Applying the sensitivity analysis also showed that renewable resources have an impact on the sizing of PV. When solar radiation increases, the size of renewable energy decreases and the NPC decreases as well. It can, thus, be illustrated that the PV/diesel/battery system is not fully-optimal. This strategy is recommended for industrial system security since it can be used to ensure systems from an energetic and economic point of view.","PeriodicalId":14200,"journal":{"name":"International Journal of Renewable Energy Development","volume":"91 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135205533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Theoretical study of a double-slope solar still with solar air heater condenser 带有太阳能空气加热器冷凝器的双斜面太阳能蒸馏器的理论研究
International Journal of Renewable Energy Development Pub Date : 2023-09-05 DOI: 10.14710/ijred.2023.53928
Ahmed Ghazy
{"title":"Theoretical study of a double-slope solar still with solar air heater condenser","authors":"Ahmed Ghazy","doi":"10.14710/ijred.2023.53928","DOIUrl":"https://doi.org/10.14710/ijred.2023.53928","url":null,"abstract":"Despite their limited water production and efficiency, double-slope solar stills are an appropriate solution for water scarcity in hot arid regions. Numerous studies have focused on enhancing the effectiveness of double-slope solar stills. In this context, this study introduces a double-slope solar with a solar air heater condenser (DSSS-SAHC). The back cover of a conventional double-slope solar still was replaced by a glass air heater in order to recover the still’s thermal losses in heating air. The transient performance of the DSSS-SAHC was investigated numerically under real weather conditions and compared to the performance of a conventional double-slope solar still (CDSSS) with the same aspects. The impact of various weather and operation factors on the DSSS-SAHC performance was investigated at air flows of 0.01 and 0.1 kg/s to account for both natural and forced air circulation, respectively. The results revealed an increase of about 15% and 6% in the thermal efficiency of the DSSS-SAHC over that of the CDSSS, respectively, at air flows of 0.1 and 0.01 kg/s despite the DSSS-SAHC distillate was insignificantly greater than that of the CDSSS at both air flows. In addition, the water distillate of the DSSS-SAHC increased as the solar irradiance increased, the ambient wind and ambient temperature had contrary effects on the efficiency, and the initial saline water level had a negligible impact on the overall performance","PeriodicalId":14200,"journal":{"name":"International Journal of Renewable Energy Development","volume":"66 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135363094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-term performance of roof-top GCPV systems in central Viet Nam 越南中部屋顶GCPV系统的长期性能
International Journal of Renewable Energy Development Pub Date : 2023-09-04 DOI: 10.14710/ijred.2023.56569
Thi Hong Nguyen, Quoc Vuong Dang, Xuan Cuong Ngo, Nhu Y Do
{"title":"Long-term performance of roof-top GCPV systems in central Viet Nam","authors":"Thi Hong Nguyen, Quoc Vuong Dang, Xuan Cuong Ngo, Nhu Y Do","doi":"10.14710/ijred.2023.56569","DOIUrl":"https://doi.org/10.14710/ijred.2023.56569","url":null,"abstract":"In pursuit of the objective of achieving \"net zero emissions,\" many countries worldwide, including Viet Nam, have prioritized the utilization of photovoltaic technology for energy conversion. Specifically, the implementation of roof-top grid-connected photovoltaic systems (GCPV) has emerged as a highly efficient solution in urban areas. These systems offer several advantages, such as minimizing land usage, lowering monthly electricity expenses, preventing building heat, generating income for households, and reducing transmission and distribution costs. This article focuses on a comprehensive long-term analysis conducted on 51 roof-top GCPV systems in the tropical monsoon climate of Hue City, Viet Nam, during the period from 2019 to 2023. The analysis findings reveal that roof-top GCPV systems with a capacity of 3-6 kW are well-suited for households in the central region of Viet Nam, characterized by a tropical monsoon climate. These systems exhibit an average sizing ratio of 1.03. The annual average daily final yield peaked at 3.28 kWh/kWp/day in 2021 and reached its lowest point at 2.97 kWh/kWp/day in 2022. Notably, the typical slope of the yield gradually increases with the installed capacity and the studied year. Furthermore, the monthly average daily final yield demonstrates a seasonal pattern, with higher yields observed from March to August and lower yields from September to January, aligning with the climate of the study area. As the years progress, the capacity factor and performance ratio of roof-top GCPV systems display a declining trend. Throughout the entire study period, these systems successfully mitigated 664 metric tons of CO2 emissions. The evaluation of long-term yield data offers valuable insights for photovoltaic installers, operators, and system owners, aiding in system maintenance and optimizing load utilization across different time periods. Long-term performance can be used by energy managers and owners of roof-top GCPV systems to identify supply shortfalls and initiate countermeasures.","PeriodicalId":14200,"journal":{"name":"International Journal of Renewable Energy Development","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135453385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modification and extension of the anaerobic model N°2 (AM2) for the simulation of anaerobic digestion of municipal solid waste 模拟城市生活垃圾厌氧消化的厌氧模型N°2 (AM2)的改进和扩展
International Journal of Renewable Energy Development Pub Date : 2023-08-15 DOI: 10.14710/ijred.2023.52798
Amine Hajji, Younes Louartassi, Mohammed Garoum, Najma Laaroussi, Mohammed Rhachi
{"title":"Modification and extension of the anaerobic model N°2 (AM2) for the simulation of anaerobic digestion of municipal solid waste","authors":"Amine Hajji, Younes Louartassi, Mohammed Garoum, Najma Laaroussi, Mohammed Rhachi","doi":"10.14710/ijred.2023.52798","DOIUrl":"https://doi.org/10.14710/ijred.2023.52798","url":null,"abstract":"Anaerobic digestion is a complex process whose understanding, optimization, and development require mathematical modeling to simulate digesters' operation under various conditions. Consequently, the present work focuses on developing a new and improved model called \"AM2P\" derived from the AM2 model. This new model incorporates surface-based kinetics (SBK) into the overall simulation process to transform the system into three stages: hydrolysis, acidogenesis, and methanogenesis. Experimental data from our previous work were used to identify the AM2 and AM2P models' parameters. Simulations showed that the AM2P model satisfactorily represented the effect of the hydrolysis phase on the anaerobic digestion process, since simulated values for acidogenic (X1) and methanogenic (X2) biomass production revealed an increase in their concentration as a function of particle size reduction, with a maximum concentration of the order of 5.5 g/l for X1 and 0.8 g/l for X2 recorded for the case of the smallest particle size of 0.5 cm, thus accurately representing the effect of substrate particle disintegration on biomass production dynamics and enabling the process of anaerobic digestion to be qualitatively reproduced. The AM2P model also provided a more accurate response, with less deviation from the experimental data; this was the case for the evolution of methane production, where the coefficient of determination (R2) was higher than 0.8, and the root-mean-square error (RMSE) was less than 0.02.","PeriodicalId":14200,"journal":{"name":"International Journal of Renewable Energy Development","volume":"49 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135114535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating the EEMD-LSTM model for short-term forecasting of industrial power load: A case study in Vietnam 评估EEMD-LSTM模型对工业电力负荷的短期预测:以越南为例
International Journal of Renewable Energy Development Pub Date : 2023-08-02 DOI: 10.14710/ijred.2023.55078
Nam Nguyen Vuu Nhat, Duc Nguyen Huu, Thu Nguyen Thi Hoai
{"title":"Evaluating the EEMD-LSTM model for short-term forecasting of industrial power load: A case study in Vietnam","authors":"Nam Nguyen Vuu Nhat, Duc Nguyen Huu, Thu Nguyen Thi Hoai","doi":"10.14710/ijred.2023.55078","DOIUrl":"https://doi.org/10.14710/ijred.2023.55078","url":null,"abstract":"This paper presents the effectiveness of the ensemble empirical mode decomposition-long short-term memory (EEMD-LSTM) model for short term load prediction. The prediction performance of the proposed model is compared to that of three other models (LR, ANN, LSTM). The contribution of this research lay in developing a novel approach that combined the EEMD-LSTM model to enhance the capability of industrial load forecasting. This was a field where there had been limited proposals for improvement, as these hybrid models had primarily been developed for other industries such as solar power, wind power, CO2 emissions, and had not been widely applied in industrial load forecasting before. First, the raw data was preprocessed using the IQR method, serving as the input for all four models. Second, the processed data was then used to train the four models. The performance of each model was evaluated using regression-based metrics such as mean absolute error (MAE) and mean squared error (MSE) to assess their respective output. The effectiveness of the EEMD-LSTM model was evaluated using Seojin industrial load data in Vietnam, and the results showed that it outperformed other models in terms of RMSE, n-RMSE, and MAPE errors for both 1-step and 24-step forecasting. This highlighted the model's capability to capture intricate and nonlinear patterns in electricity load data. The study underscored the significance of selecting a suitable model for electricity load forecasting and concluded that the EEMD-LSTM model was a dependable and precise approach for predicting future electricity assets. The model's robust performance and accurate forecasts showcased its potential in assisting decision-making processes in the energy sector.","PeriodicalId":14200,"journal":{"name":"International Journal of Renewable Energy Development","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136384325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Numerical assessment of meshless method for studying nanofluid natural convection in a corrugated wall square cavity 无网格法研究方形波纹壁腔内纳米流体自然对流的数值评价
International Journal of Renewable Energy Development Pub Date : 2023-07-27 DOI: 10.14710/ijred.2023.53277
Youssef Es-Sabry, Mohammed Jeyar, Elmiloud Chaabelasri, Dris Bahia
{"title":"Numerical assessment of meshless method for studying nanofluid natural convection in a corrugated wall square cavity","authors":"Youssef Es-Sabry, Mohammed Jeyar, Elmiloud Chaabelasri, Dris Bahia","doi":"10.14710/ijred.2023.53277","DOIUrl":"https://doi.org/10.14710/ijred.2023.53277","url":null,"abstract":"This study aims to investigate the impact of various factors, such as wall shape, Rayleigh number, and volume fraction of nanoparticles, on natural convection in a square cavity that is filled with a mixture of Al2O3 solid particles and liquid water. The research employs numerical simulations based on the radial basis function meshless method and the artificial compressibility technique. The results of the study showed that the temperature distribution in the cavity was mostly uniform, except in the vicinity of the hot wall, while the flow was primarily dominated by convection as the Rayleigh number increased. Furthermore, the heat transfer rate increased with the volume fraction of nanoparticles, indicating the significance of nanoparticles in improving the thermal performance of the system. Additionally, the study found that the average Nusselt number, which characterizes the heat transfer efficiency, was highest when the cavity had a wavy wall. For single and double wavy walls, there were respective enhancements of 32% and 6% compared to a regular wall. Additionally, the Nusselt number increased as the volume fraction of nanoparticles, indicating a significant influence of nanoparticle concentration and wall geometry on the fluid flow and heat transfer characteristics in the square cavity. Consequently, this study's outcomes provide crucial insights into designing and optimizing thermal management systems, particularly those utilizing nanofluids.","PeriodicalId":14200,"journal":{"name":"International Journal of Renewable Energy Development","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135708398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信