{"title":"Application of day-ahead optimal scheduling model based on multi-energy micro-grids with uncertainty in wind and solar energy and energy storage station","authors":"Hongxin Zhang","doi":"10.61435/ijred.2024.60218","DOIUrl":"https://doi.org/10.61435/ijred.2024.60218","url":null,"abstract":"Multi-energy micro-grid has received widespread attention in the wave of continuous promotion and development of renewable energy. However, in the face of wind and solar uncertainty, its scheduling model needs to be further optimized. Therefore, a multi-energy micro-grid day-ahead optimal scheduling model was proposed to construct wind and solar uncertainty scenarios, and the application of energy storage station was considered. Multiple algorithms were introduced to propose the multi-energy micro-grid day-ahead optimal scheduling model. Finally, the research content was validated. The results confirmed that the wind and solar power output probability model could describe the characteristics of wind and solar power output at different periods. The generated scenes had a large number of wind speeds in the range of 1.5 m/s to 5 m/s, and the light intensity reached its peak at 14:00, which was consistent with the historical data of the research object. In addition, the total pre-scheduling cost of this optimized scheduling model within a day was 45.16×105 yuan, while the actual scheduling cost within a day was only 21.46×105 yuan. It saved costs by 41.65% and 44.95%, respectively, compared to the comparison algorithms. The research has driven innovation and optimization of the multi-energy micro-grid scheduling model. This provides a useful theoretical and practical basis for addressing the uncertainty of wind and solar energy and improving the economic efficiency of energy systems, which is crucial for the sustainable development of new energy.","PeriodicalId":14200,"journal":{"name":"International Journal of Renewable Energy Development","volume":" 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141672735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hendy Eka Hardana, Pupung Adiwibowo, Y. Sunitiyoso, Tri Edi Kusuma Kurniawan
{"title":"Financial viability analysis for green hydrogen production opportunity from hydropower plant’s excess power in Indonesia","authors":"Hendy Eka Hardana, Pupung Adiwibowo, Y. Sunitiyoso, Tri Edi Kusuma Kurniawan","doi":"10.61435/ijred.2024.60304","DOIUrl":"https://doi.org/10.61435/ijred.2024.60304","url":null,"abstract":"The research presents a comprehensive analysis of the financial viability of producing green hydrogen from excess power generated by small hydropower plants in Indonesia. It highlights Indonesia’s commitment to increasing renewable energy sources to achieve net zero emissions by 2060 and the role of Perusahaan Listrik Negara (PLN) in this transition. The study examines the potential of utilizing dormant excess power from retroactive small hydropower plants to produce green hydrogen, which could significantly decarbonize hard-to-abate sectors and enhance energy security. The authors conducted a financial analysis using the NREL H2A Production Model to determine the optimal technical arrangement and financial simulation for green hydrogen production. The paper discusses various electrolyzer technologies, with a focus on alkaline water electrolyzers due to their high technology readiness level and low capital expenditure. It also explores the sensitivity of the levelized cost of hydrogen to different factors, particularly the cost of utilities. The findings suggest that green hydrogen production from small hydropower plants is economically feasible in Indonesia, with the potential to contribute to the global hydrogen market and support the country’s green circular economy. The study concludes that green hydrogen production using excess electricity from small hydropower plants is a viable method for decarbonization and offers scalability for future energy production in Indonesia, with the first initial step being as a green hydrogen and natural gas co-firing fuel mixing in gas turbines.","PeriodicalId":14200,"journal":{"name":"International Journal of Renewable Energy Development","volume":" 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141672496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Ariyanti, A. Purbasari, Farida Diyah Hapsari, Erwan Adi Saputra, Fazlena Hamzah
{"title":"Characteristics of all organic redox flow battery (AORFB) active species TEMPO-methyl viologen at different electrolyte solution","authors":"D. Ariyanti, A. Purbasari, Farida Diyah Hapsari, Erwan Adi Saputra, Fazlena Hamzah","doi":"10.61435/ijred.2024.60155","DOIUrl":"https://doi.org/10.61435/ijred.2024.60155","url":null,"abstract":"The practice of using wind and solar energy to generate electricity represents a solution that would be beneficial for the environment and ought to be explored. However, in order to ensure users' stability and continuous access to electricity, the increasing usage of renewable energy needs to align with the advancement of energy storage technologies. Redox flow batteries, which use an organic solution as the electrolyte and a proton exchange membrane as an ion exchange layer, are currently the subject of extensive research as one of the alternative renewable energy storage systems with the benefit of a techno economy. This study investigated the solubility of organic solution, namely 2,2,6,6-Tetramethylpiperidinyloxy or 2,2,6,6-Tetramethylpiperidine 1-oxyl (TEMPO) and methyl viologen (MV) in various essential electrolyte solutions such as NaCl, KCl, KOH, and H2SO4 that can be used as electrolytes of all organic redox flow battery (AORFB) system to produce high energy density and charging and discharging capacity. The result shows the optimum condition for effective charge transfer in AORFB is TEMPO catholyte and MV anolytes in the 0.08 M H2SO4electrolyte solution. Additionally, a correlation between the acquisition of electrolyte solutions on TEMPO catalyst and MV anolytes was discovered by the data. Electrolyte solution can improve electrical conductivity in TEMPO solution, which in turn can improve the efficiency of AORFB charging and discharging. Contrarily, MV anolytes exhibit a different pattern where the addition of electrolyte solutions reduces their electrical conductivity. RFBs systems with the aforementioned catholyte and anolyte can be used to store solar energy with a maximum current of 0.6 A for 35 minutes. Storage effectiveness is characterized by a change in colour in the catholyte and anolyte. The findings firming the possibility of using AORFB as one of the alternative energy storage systems that can accommodate the intermittence of the renewable energy input resource. ","PeriodicalId":14200,"journal":{"name":"International Journal of Renewable Energy Development","volume":" 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141674846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nur Cahyo, D. Sulistyowati, M. A. Rahmanta, Muhamad Iqbal Felani, Mochamad Soleh, Paryanto Paryanto, A. Prismantoko, Hariana Hariana
{"title":"A techno-economic and environmental analysis of co-firing implementation using coal and wood bark blend at circulating fluidized bed boiler","authors":"Nur Cahyo, D. Sulistyowati, M. A. Rahmanta, Muhamad Iqbal Felani, Mochamad Soleh, Paryanto Paryanto, A. Prismantoko, Hariana Hariana","doi":"10.61435/ijred.2024.60234","DOIUrl":"https://doi.org/10.61435/ijred.2024.60234","url":null,"abstract":"The study aimed to explore the effects of biomass co-firing of coal using acacia wood bark at circulating fluidized bed (CFB) boiler coal-fired power plant with 110 MWe capacity. The analysis focused on main equipment parameters, including the potential for slagging, fouling, corrosion, agglomeration, fuel cost, and specific environmental factors. Initially, coal and acacia wood bark fuel were blended at a 3% mass ratio, with calorific values of 8.59 MJ/kg and 16.59 MJ/kg, respectively. The corrosion due to chlorine and slagging potential when using wood bark was grouped into the minor and medium categories. The results showed that co-firing at approximately 3% mass ratio contributed to changes in the upper furnace temperature due to the variation in heating value, high total humidity, and a less homogeneous particle size distribution. Significant differences were also observed in the temperature of the lower furnace area, showing the presence of a foreign object covering the nozzle, which disturbed the ignition process. A comparison of the seal pot temperature showed imbalances as observed from the temperature indicators installed on both sides of boiler, with specific fuel consumption (SFC) increasing by approximately 0.17%. During the performance test, the price of acacia wood bark was 0.034 USD/kg, resulting in fuel cost of 0.023355 USD/kWh, adding 0.061 cent/kWh to coal firing cost. Despite co-firing, the byproducts of the combustion process, such as SO2 and NOx, still met environmental quality standards in accordance with government regulations. However, a comprehensive medium- and long-term impact evaluation study should be carried out to implement co-firing operations using acacia wood bark at coal-fired power plant. Based on the characteristics, such as low calorific value, with high ash, total moisture, and alkali, acacia wood bark showed an increased potential to cause slagging and fouling.","PeriodicalId":14200,"journal":{"name":"International Journal of Renewable Energy Development","volume":"58 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141383219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Z. D. Hastuti, E. Rosyadi, Hana Nabila Anindita, Imron Masfuri, Nurdiah Rahmawati, Tyas Puspita Rini, Trisno Anggoro, Wargiantoro Prabowo, F. R. Saputro, Ade Syafrinaldy
{"title":"Effects of CaO addition into CuO/ZnO/Al2O3 catalyst on hydrogen production through water gas shift reaction","authors":"Z. D. Hastuti, E. Rosyadi, Hana Nabila Anindita, Imron Masfuri, Nurdiah Rahmawati, Tyas Puspita Rini, Trisno Anggoro, Wargiantoro Prabowo, F. R. Saputro, Ade Syafrinaldy","doi":"10.61435/ijred.2024.59257","DOIUrl":"https://doi.org/10.61435/ijred.2024.59257","url":null,"abstract":"Hydrogen is a promising renewable energy carrier and eco-friendly alternative to fossil fuels. Water-gas-shift reaction (WGSR) is commonly used to generate hydrogen from renewable biomass feedstocks. Enriching hydrogen content in synthesis gas (syngas) production can be made possible by applying the WGSR after gasification. WGSR can achieve a maximal carbon monoxide (CO) conversion using a commercially patented CZA (Cu/ZnO/Al2O3) catalyst. This study proposed three in-lab self-synthesized CZA catalysts to be evaluated and compared with the patented catalyst performance-wise. The three catalysts were prepared with co-precipitation of different Cu:Zn:Al molar ratios: CZA-431 (4:3:1), CZA-531 (5:3:1) and CZA-631 (6:3:1). The catalysts characteristics were determined through X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) analysis and Scanning Electron Microscopy (SEM) techniques. CO gas was mixed with steam in a catalytic reactor with a 3:1 molar ratio, running continuously through the catalyst at 250 °C for 30 mins. All three catalysts, however, performed below expectations, where CZA-431 had a CO conversion of 77.44%, CZA-531 48.75%, and CZA-631 71.67%. CaO, as a co-catalyst, improved the performance by stabilizing the gas composition faster. The CO conversion of each catalyst also improved: CZA-431 improved its CO conversion to 97.39%, CZA-531 to 96.71%, and CZA-631 to 95.41%. The downward trend of the CO conversion was deemed to be caused by copper content found in CZA-531 and CZA-631 but not in CZA-431, which tended to form a Cu-Zn metal complex, weakening the catalyst's activity.","PeriodicalId":14200,"journal":{"name":"International Journal of Renewable Energy Development","volume":" 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141128015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Doaa Eid, Said Elmasry, Adel El Samahy, F. Elnagahy, E. Youssef
{"title":"Frequency control enhancement for hybrid microgrid using multi-terminal multi-function inverter","authors":"Doaa Eid, Said Elmasry, Adel El Samahy, F. Elnagahy, E. Youssef","doi":"10.61435/ijred.2024.60144","DOIUrl":"https://doi.org/10.61435/ijred.2024.60144","url":null,"abstract":"Renewable energy sources (RESs) are considered a crucial energy transformation to reduce carbon emissions, so more RESs are being integrated into contemporary power systems. Power electronic converters are extensively utilized to connect power grids with renewable generators to manage the fluctuations and unpredictability of these renewable energy sources. This paper introduces a multi-terminal multi-function inverter (MT-MF) designed for a battery energy storage system (BESS) to maintain the frequency stability of a hybrid microgrid (MG). The MG comprises a photovoltaic generation system, a diesel generator, BESS, and two loads: one constant load and the other variable, fed through a medium-voltage radial feeding system. An introduced approach involves utilizing a model predictive control controlled virtual synchronous generator (MPC-VSG) for BESS. This method offers inertia support during transient states and improves the dynamic characteristics of system frequency. In addition, it enables the connection of multiple batteries, provides individualized control for each, and supports the injection of reactive power into the MG. The required power from the BESS is shared between the two batteries using the low pass filter technique. The simulation outcomes affirm the proposed control strategy’s effectiveness and underscore the MT-MF inverter approach’s potential in integrating extensive RESs. This paper also explores how the proposed technique outperforms other methods in improving frequency stability.","PeriodicalId":14200,"journal":{"name":"International Journal of Renewable Energy Development","volume":"109 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140986762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christopher Thomas Warburg, Tatiana Pogrebnaya, T. Kivevele
{"title":"Electrical power output potential of different solar photovoltaic systems in Tanzania","authors":"Christopher Thomas Warburg, Tatiana Pogrebnaya, T. Kivevele","doi":"10.61435/ijred.2024.58972","DOIUrl":"https://doi.org/10.61435/ijred.2024.58972","url":null,"abstract":"This study examines the photovoltaic (PV) energy output and levelized cost of energy (LCOE) in seven regions of Tanzania across five different tilt adjustments of 1 MW PV systems. The one-diode model equations and the PVsyst 7.2 software were used in the simulation. The results reveal variations in energy output and LCOE among the regions and tilt adjustments indicating a strong correlation between PV energy output and solar irradiance incident on the PV panel. For horizontal mounting, the annual energy output ranges from 1229 MWh/year in Kilimanjaro to 1977 MWh/year in Iringa. Among the three optimal tilt adjustments, annually, monthly and seasonal, the last two are predicted to yield larger energy outputs, whereas the two axis tracking configuration consistently provides the maximal energy output in all regions, ranging from 1533 MWh/year in Kilimanjaro to 2762 MWh/year in Iringa. The LCOE analysis demonstrates the cost-effectiveness of solar PV systems compared to grid-connected and isolated mini-grid tariffs. The LCOE values across the regions and tilt adjustments range from $0.07/kWh to $0.16/kWh. In comparison, the tariff for grid-connected solar PV is $0.165/kWh, while for isolated mini-grids; it is $0.181/kWh. The monthly optimal tilt configuration proves to be the most cost-effective option for energy generation in multiple regions, as it consistently exhibits the lowest energy cost compared to the other four configurations. The results provide valuable insights into the performance and economic feasibility of various system setups. Through meticulous simulation and data analysis, we have gained a comprehensive understanding of the factors influencing energy generation and costs in the context of solar photovoltaic systems.","PeriodicalId":14200,"journal":{"name":"International Journal of Renewable Energy Development","volume":"316 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141012334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rheinanda Rachmaditasari, Muhamad Irfaid Darojat, M. Mahfud
{"title":"Production of biodiesel (isopropyl ester) from coconut oil by microwave assisted transesterification: parametric study and optimization","authors":"Rheinanda Rachmaditasari, Muhamad Irfaid Darojat, M. Mahfud","doi":"10.61435/ijred.2024.60174","DOIUrl":"https://doi.org/10.61435/ijred.2024.60174","url":null,"abstract":"Biodiesel, a renewable fuel for diesel vehicle engines, has been commonly produced from transesterification process involving triglycerides from vegetable oil with alcohol. One of the most promising candidates for vegetable oil due to its abundance in Indonesia is coconut oil. However, the short carbon chain present in coconut oil necessitates the use of longer-chain alcohol types to adjust to the biodiesel carbon chain, such as isopropanol. Therefore, this research focused on producing biodiesel (isopropyl ester) from coconut oil using isopropanol and NaOH catalyst through a transesterification process. To enhance this process, microwave technology was utilized for its ability to lower the biodiesel production reaction time from the conventional one-hour timeframe to less than ten minutes, increase energy efficiency, and improve biodiesel quality. The primary objective was to investigate the impact of reaction time, catalyst concentration, and microwave power on the isopropyl ester yield. Further optimization was conducted using Response Surface Methodology (RSM) with Box-Behnken Design (BBD) to illustrate the model's effectiveness and applicability. Based on BBD optimization simulation, the optimal condition for producing isopropyl ester from coconut oil using microwave technology is a 1-minute reaction time, 0.2 wt.% NaOH catalyst concentration, and 443.9 W microwave power, maximizing the yield to 99.89%. This research highlights the potential of microwave assisted transesterification and the reliability of this innovative approach, contributing to the development of isopropyl ester production with enhanced quality that meets the specifications of the Indonesian National Standard (SNI).","PeriodicalId":14200,"journal":{"name":"International Journal of Renewable Energy Development","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141018328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thoai Anh Nguyen, Thi Yen Pham, Huu Cuong Le, Van Giao Nguyen, Lan Huong Nguyen
{"title":"Exploring the feasibility of dimethyl ether (DME) and LPG fuel blend for small diesel engine: A simulation perspective","authors":"Thoai Anh Nguyen, Thi Yen Pham, Huu Cuong Le, Van Giao Nguyen, Lan Huong Nguyen","doi":"10.61435/ijred.2024.60250","DOIUrl":"https://doi.org/10.61435/ijred.2024.60250","url":null,"abstract":"There is a looming global crisis owing to the increase in greenhouse gases and the escalating fossil fuel process. The issue is further compounded by the ongoing conflicts in different places in the world. Hence, there is an urgent need for a bouquet of alternative fuels suitable to power the incumbent internal combustion engine. Among various options available Dimethyl Ether (DME) is a friendly environment fuel, easy to liquefy, and suitable for use in diesel engines, while Liquefied Petroleum Gas (LPG) is another potential alternative fuel suitable for internal combustion engines. The present study is an endeavor to investigate the characteristics of a diesel engine powered with DME-diesel blends as pilot fuel while LPG was used as the main fuel. During engine testing, different blends of diesel-DME were used containing 0%, 25%, 50%, and 75% DME. The AVL Boost software was employed for modeling the engine performance and tailpipe emission. The test fuel combination was successful in running the engine sans any abnormality in sound or performance. The results showed carbon monoxide (CO) and hydrocarbon (HC) emissions were reduced using the test fuel combination while there was a marginal increase in the oxides of nitrogen (NOx) levels. In general, the combination of DME and LPG could be considered as a potential and promising solution to reducing pollutant emissions.","PeriodicalId":14200,"journal":{"name":"International Journal of Renewable Energy Development","volume":"113 46","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140680673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sofiane Benchamma, Mohammed Missoum, Nefissa Belkacem
{"title":"Performance of a direct-expansion solar-assisted heat pump for domestic hot water production in Algeria","authors":"Sofiane Benchamma, Mohammed Missoum, Nefissa Belkacem","doi":"10.61435/ijred.2024.60112","DOIUrl":"https://doi.org/10.61435/ijred.2024.60112","url":null,"abstract":"The focus of this study is to investigate the energy performance of a direct-expansion solar-assisted heat pump water heating system (DX-SAHPWH). The system consists of an unglazed solar collector-evaporator, which can absorb heat from solar energy and air ambient simultaneously, a condenser in the form of a coil immersed in a hot water storage tank, a thermostatic expansion valve and a hermetic reciprocating compressor. The performance of the heat pump system is evaluated using a developed mathematical model under Matlab code. The modelling method is based on lumped and distributed parameter approach of different system components. Numerical calculations were carried-out to study the influence of different parameters, such as ambient temperature, solar radiation intensity and polytropic index on the system performance. Additionally, in order to evaluate the long-term system performance, the system’s model was applied on a case study of a single-family building located in Djelfa (Algeria), which represents the coldest arid region of the country. The results showed that the solar radiation intensity and ambient temperature have significant effects on the heat pump performance. A COP of 5.9 and a collector-evaporator efficiency of 1.9 were obtained at high solar radiation of 850 W/m2 resulting in lower heating time (29 min). In addition, results revealed that the system can operate even at lower ambient temperature due to its ability to take advantage of heat from the ambient air. The results from the case study gave a COP ranging from 2.3 to 3.8, which enhance the promising adoption of this system in domestic hot water production to respond to people daily life needs with clean, abundant and renewable energy.","PeriodicalId":14200,"journal":{"name":"International Journal of Renewable Energy Development","volume":"195 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140693493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}