International Journal of Photoenergy最新文献

筛选
英文 中文
Influence of Duct Configurations on the Performance of Solar-Assisted Heat Pump Dryer for Drying Tobacco Leaves 风道结构对太阳能热泵烟叶干燥机性能的影响
IF 3.2 4区 工程技术
International Journal of Photoenergy Pub Date : 2023-05-16 DOI: 10.1155/2023/4588407
Salum Abdulkarim Suleiman, A. Pogrebnoi, T. Kivevele
{"title":"Influence of Duct Configurations on the Performance of Solar-Assisted Heat Pump Dryer for Drying Tobacco Leaves","authors":"Salum Abdulkarim Suleiman, A. Pogrebnoi, T. Kivevele","doi":"10.1155/2023/4588407","DOIUrl":"https://doi.org/10.1155/2023/4588407","url":null,"abstract":"In the present study, a solar-assisted heat pump dryer (SAHPD) has been designed, fabricated, and tested its performance on drying tobacco leaves. The hot air generated from the solar collector and condenser unit of the heat pump was used as a source of heat in the drying chamber. In this study, we investigated the influence of three duct configurations (open, partially closed, and completely closed) on the thermal performance of SAHPD to establish the best configuration for drying tobacco leaves. The average drying temperature was found to be 66, 64, and 60°C; the coefficient of performance of the heat pump was 3.4, 3.2, and 3.0; the heat energy contribution from the solar collector was 6.6%, 5.0%, and 5.1% while for the condenser was 93.4%, 95.0%, and 94.9%, and electrical energy consumption was 2.3, 2.8, and 2.6 kWh, for the open, partially closed, and completely closed duct system, respectively. Based on these results, the open system demonstrated the best performance. According to the study’s findings, SAHPD has been shown to be an energy-efficient method of drying tobacco leaves and is environmentally friendly as opposed to the conventional use of wood fuel, which results in environmental pollution, desertification, and deforestation.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43114180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Simulation of High Efficiency Environment Friendly CuBi2O4-Based Thin-Film Solar Cell Using SCAPS-1D 高效环保CuBi2O4基薄膜太阳能电池的SCAPS-1D数值模拟
IF 3.2 4区 工程技术
International Journal of Photoenergy Pub Date : 2023-04-26 DOI: 10.1155/2023/7208502
Kushal Sarker, Md. Shamsujjoha Sumon, Mst. Farzana Orthe, Sunirmal Kumar Biswas, Mostak Ahmed
{"title":"Numerical Simulation of High Efficiency Environment Friendly CuBi2O4-Based Thin-Film Solar Cell Using SCAPS-1D","authors":"Kushal Sarker, Md. Shamsujjoha Sumon, Mst. Farzana Orthe, Sunirmal Kumar Biswas, Mostak Ahmed","doi":"10.1155/2023/7208502","DOIUrl":"https://doi.org/10.1155/2023/7208502","url":null,"abstract":"In this research work, a copper bismuth oxide- (CuBi2O4-) based thin-film solar cell has been proposed for the lead and toxic-free (Al/ITO/TiO2/CuBi2O4/Mo) structure simulated in SCAPS-1D software. The main aim of this work to make an ecofriendly and highly efficient thin-film solar cell. The absorber layer CuBi2O4, buffer layer TiO2, and the electron transport layer (ETL) ITO have been used in this simulation. The performance of the suggested photovoltaic devices was quantitatively evaluated using variations in thickness such as absorber, buffer, defect density, operating temperature, back contact work function, series, shunt resistances, acceptor density, and donor density. The absorber layer thickness is fixed at 2.0 μm, the buffer layer at 0.05 μm, and the electron transport layer at 0.23 μm, respectively. The CuBi2O4 absorber layer produces a solar cell efficiency of 31.21%, an open-circuit voltage (\u0000 \u0000 \u0000 \u0000 V\u0000 \u0000 \u0000 oc\u0000 \u0000 \u0000 \u0000 ) of 1.36 V, short-circuit current density (\u0000 \u0000 \u0000 \u0000 J\u0000 \u0000 \u0000 sc\u0000 \u0000 \u0000 \u0000 ) of 25.81 mA/cm2, and a fill factor (FF) of 88.77%, respectively. It is recommended that the proposed CuBi2O4-based structure can be used as a potential for thin-film solar cells that are both inexpensive and highly efficient.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42643027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Integrating Solar Photovoltaic Power Source and Biogas Energy-Based System for Increasing Access to Electricity in Rural Areas of Tanzania 整合太阳能光伏电源和沼气能源系统,增加坦桑尼亚农村地区的电力供应
IF 3.2 4区 工程技术
International Journal of Photoenergy Pub Date : 2023-04-26 DOI: 10.1155/2023/7950699
Isaka J. Mwakitalima, M. Rizwan, Narendra Kumar
{"title":"Integrating Solar Photovoltaic Power Source and Biogas Energy-Based System for Increasing Access to Electricity in Rural Areas of Tanzania","authors":"Isaka J. Mwakitalima, M. Rizwan, Narendra Kumar","doi":"10.1155/2023/7950699","DOIUrl":"https://doi.org/10.1155/2023/7950699","url":null,"abstract":"Renewable energy is the best option for the challenge of dwindling natural resources and energy scarcity. The utilization of solar photovoltaic (PV) systems is the best option for eliminating the energy deficit in Tanzania due to the available great potential of solar energy. Animal manure is a significant source of waste in rural locations which can be transformed into biogas fuel by an anaerobic process. Livestock and agriculture greatly support economically the majority of the sub-Saharan African (SSA) region’s rural population including Tanzania, and excreta from cattle are beneficial for biogas fuel production. Unfortunately, the high potential of animal waste for generating electricity is underutilized. Integrating solar energy sources and biogas fuel derived from animal manure is useful for mitigating energy shortage, power instability, and environmental issues. Off-grid solar PV biogas-based hybrid microgrid systems for rural electrification applications in the Tanzanian environment are limited, and also, most of the studies are extensively carried out using soft computing tools especially hybrid optimization of multiple energy resources (HOMER) software with limited applications of artificial intelligence (AI) optimization techniques. This paper presents technoeconomic viability analysis for a hybrid renewable energy supply system (HRESS) for the Simboya village in Mbeya region, Tanzania. Off-grid HRESS is designed and optimized to meet the load of the chosen location executed using HOMER software and the grey wolf optimization (GWO) method. The microgrid is anticipated to supply daily maximum demand of 63.41 kW. The residential load profile equals 30 kW representing 50% of the daily demand. Optimization results by the HOMER platform indicate that the system has a total net present cost (NPC) and levelized cost of energy (LCOE) of $106,383.50 and $0.1109/kWh, respectively. Furthermore, this paper presents the optimization and sensitivity analysis results acquired by the GWO method under varied values of Loss of Electrical Power Probability (LEPP). Total NPC and LCOE based on LEPP values of 0, 0.04, and 0.06 are $85,106.8, $79,545.99, and $71,747.36 and $0.0887/kWh, $0.0316/kWh, and $0.0102/kWh, respectively. HRESS is economically and environmentally beneficial for supplying electricity to the selected area and worldwide in similar situations.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45659984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Design and Simulation of a Cooling System for FTO/I-SnO2/CdS/CdTe/Cu2O Solar Cells FTO/I-SnO2/CdS/CdTe/Cu2O太阳能电池冷却系统的设计与仿真
IF 3.2 4区 工程技术
International Journal of Photoenergy Pub Date : 2023-04-20 DOI: 10.1155/2023/1718588
P. Khaledi, Mahdi Behboodnia
{"title":"Design and Simulation of a Cooling System for FTO/I-SnO2/CdS/CdTe/Cu2O Solar Cells","authors":"P. Khaledi, Mahdi Behboodnia","doi":"10.1155/2023/1718588","DOIUrl":"https://doi.org/10.1155/2023/1718588","url":null,"abstract":"The temperature in solar cells is one of the main factors affecting their efficiency. Increasing the temperature in solar cells reduces efficiency. According to previously published and recently published studies by our team, with increasing temperature in 5-layer FTO/i-SnO2/CdS/CdTe/Cu2O solar cells, the efficiency has decreased by 8.86% per 100 K. In this research, phase change materials have been used to control the temperature in 5-layer solar cells. Our overall goal in this study is to control the temperature in FTO/i-SnO2/CdS/CdTe/Cu2O solar cells to increase their efficiency. The results obtained using simulations and numerical analysis and comparative analysis show that if one layer is used as a cooling arrangement in 5-layer FTO/i-SnO2/CdS/CdTe/Cu2O solar cells, it reduces the surface temperature of solar cells and increases efficiency.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44965050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A New High-Performance Photovoltaic Emulator Suitable for Simulating and Validating Maximum Power Point Tracking Controllers 一种适用于最大功率点跟踪控制器仿真与验证的高性能光伏仿真器
IF 3.2 4区 工程技术
International Journal of Photoenergy Pub Date : 2023-04-20 DOI: 10.1155/2023/4225831
Ambe Harrison, N. H. Alombah
{"title":"A New High-Performance Photovoltaic Emulator Suitable for Simulating and Validating Maximum Power Point Tracking Controllers","authors":"Ambe Harrison, N. H. Alombah","doi":"10.1155/2023/4225831","DOIUrl":"https://doi.org/10.1155/2023/4225831","url":null,"abstract":"Photovoltaic (PV) research is rapidly growing, and the need for controlled environments to validate new MPPT controllers is becoming increasingly important. Currently, researchers face several challenges in testing MPPT algorithms due to the unpredictable nature of solar PV power generation. In this paper, we propose a new photovoltaic emulator (PVE) that could replace solar panels and ensure a highly controllable environment suitable for testing photovoltaic (PV) systems. In this PVE, the complex nonlinear equations of the PV cell/module are fast computed and resolved by a new linearization technique which involves the systematic breakdown of the current-voltage (\u0000 \u0000 I\u0000 \u0000 -\u0000 \u0000 V\u0000 \u0000 ) curve of the PV into twelve linear segments. Based on input environmental conditions, an artificial neural network (ANN) was constructed to assist the linearization process by predicting the current-voltage boundary coordinates of these segments. Using simple linear equations, with the segment boundary coordinates, a reference voltage was generated for the PVE. A nonlinear backstepping controller was designed to exploit the reference voltage and stabilize the power conversion stage (PCS). The PVE was optimized using particle swarm optimization (PSO). Several tests have shown that the proposed nonlinear controller provides better dynamic and robust performance than the PI controller, the most reputable and recurrent control method in the area of PVE. The PVE was coupled with a recently proposed integral backstepping MPPT controller and analyzed under several dynamic conditions, including the MPPT test specified by EN 50530. It was found that the accuracy of the proposed PVE measured by its relative error is less than 0.5%, with an MPPT efficiency of greater than 99.5%. The attractive results achieved by this PVE make it especially suitable for simulating and validating MPPT controllers.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46167160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Investigating the Cost-Effectiveness of Solar Electricity Compared to Grid Electricity in the Capitals of Middle Eastern Countries: A Residential Scale Case Study 中东国家首都太阳能发电与电网发电的成本效益调查:一个住宅规模的案例研究
IF 3.2 4区 工程技术
International Journal of Photoenergy Pub Date : 2023-04-18 DOI: 10.1155/2023/8028307
S. Shahgholian, Mahdi Taheri, M. Jahangiri
{"title":"Investigating the Cost-Effectiveness of Solar Electricity Compared to Grid Electricity in the Capitals of Middle Eastern Countries: A Residential Scale Case Study","authors":"S. Shahgholian, Mahdi Taheri, M. Jahangiri","doi":"10.1155/2023/8028307","DOIUrl":"https://doi.org/10.1155/2023/8028307","url":null,"abstract":"Despite of being rich in fossil fuels, the Middle East is currently the main energy consumer and is projected to have the highest growth in energy demand in the world. Due to its great potential in the Middle East, solar energy can play an important role in the plans of energy decision-makers in the region. According to the studies done so far, no study has been done to show the potential benefit of using home-scale solar systems in the Middle East. Therefore, in this work for the first time, the potential of solar electricity production in the capitals of Middle Eastern countries has been studied using HOMER V2.81 software. The investigations are technical, economic, energy, and environmental, and the studied solar system is connected to the national electricity grid. The results showed that in Nicosia, due to the sale of electricity to the grid, the levelized cost of electricity (LCOE) is equal to -0.759 $, which is the lowest price for produced electricity and leads to a return on investment time of 5.69 years for this system. The solar fraction for the Nicosia station is 92%, which prevents the emission of more than 8 tons of CO2 pollutants during the year. The highest value of LCOE with the amount of $0.25 is related to Sana’a, whose investment return time, solar fraction, and annual CO2 emission prevention amount are 14.1 years, 53%, and 1162 kg, respectively. Ranking analysis was done on the results of 5 outputs of the HOMER software as well as 3 other influential parameters using 4 multicriteria decision-making (MCDM) methods. TOPSIS, GRA, WSM, and AHP methods were used, and the final ranking of each station was considered the average of the 4 methods. According to the results, Cyprus and Kuwait stations were the best and worst, respectively.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45464022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Hybrid Energy Storage System Strategy for Smoothing Photovoltaic Power Fluctuation Based on Improved HHO-VMD 基于改进HHO-VMD的光伏功率波动平滑混合储能系统策略
IF 3.2 4区 工程技术
International Journal of Photoenergy Pub Date : 2023-04-04 DOI: 10.1155/2023/9633843
Yu Zhang, Yuhu Wu, Lianmin Li, Zhongxiang Liu
{"title":"A Hybrid Energy Storage System Strategy for Smoothing Photovoltaic Power Fluctuation Based on Improved HHO-VMD","authors":"Yu Zhang, Yuhu Wu, Lianmin Li, Zhongxiang Liu","doi":"10.1155/2023/9633843","DOIUrl":"https://doi.org/10.1155/2023/9633843","url":null,"abstract":"To solve the problems of large fluctuation of photovoltaic output power affecting the safe operation of the power grid, a hybrid energy storage capacity configuration strategy based on the improved Harris hawks optimization algorithm optimizing variational mode decomposition (IHHO-VMD) is proposed. In this strategy, the improved Harris hawk optimization algorithm is used to adaptively select \u0000 \u0000 k\u0000 \u0000 and \u0000 \u0000 α\u0000 \u0000 in VMD parameters and decompose the photovoltaic output power and distinguish between correlated and uncorrelated modes. Similarly, the moving average method (MA) is used to extract the continuous component signal in the uncorrelated mode, and it is reconstructed with the related mode as the grid-connected power that meets the national standard. The hybrid energy storage system (HESS) is used to stabilize the fluctuation component signal. The minimum annual configuration cost of the energy storage system is established as the objective function. The simulation results show that the improved algorithm reduces the cost of the hybrid energy storage system by 6.15% compared with the original algorithm, suppresses the power fluctuation, and improves the economy and stability of the system.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47900801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Effect of Molybdenum Disulphide Thin Films on Enhancing the Performance of Polycrystalline Silicon Solar Cells 二硫化钼薄膜对提高多晶硅太阳能电池性能的影响
IF 3.2 4区 工程技术
International Journal of Photoenergy Pub Date : 2023-03-01 DOI: 10.1155/2023/8532250
Rajasekar Rathanasamy, Gobinath Velu Kaliyannan, S. Sivaraj, Essakkiappan Muthiah, Abdul Azeem Ajmal Khaan, Dharmaprakash Ravichandran, Md Elias Uddin
{"title":"Effect of Molybdenum Disulphide Thin Films on Enhancing the Performance of Polycrystalline Silicon Solar Cells","authors":"Rajasekar Rathanasamy, Gobinath Velu Kaliyannan, S. Sivaraj, Essakkiappan Muthiah, Abdul Azeem Ajmal Khaan, Dharmaprakash Ravichandran, Md Elias Uddin","doi":"10.1155/2023/8532250","DOIUrl":"https://doi.org/10.1155/2023/8532250","url":null,"abstract":"This research work focuses on augmenting the power conversion efficiency of the polycrystalline silicon solar cell with the aid of antireflection coating (ARC) of synthesized molybdenum disulphide (MoS2). The sol-gel technique and electrospraying method were preferred for synthesizing and depositing MoS2 as transparent thin films on the surface of the solar cells. The optical, electrical, structural, and thermal properties of the coated solar cells were analyzed for understanding the influence of the MoS2 coating. Five different samples (A-II, A-III, A-IV, A-V, and A-VI) were coated with varying coating time. Among them, 120 min coated sample experienced a maximum power conversion efficiency (PCE) of 17.96% and 18.82% under direct sunlight and neodymium light with resistivity as low as \u0000 \u0000 2.79\u0000 ×\u0000 \u0000 \u0000 10\u0000 \u0000 \u0000 −\u0000 3\u0000 \u0000 \u0000  \u0000 Ω\u0000 −\u0000 cm\u0000 \u0000 . The investigation of optical properties of the coated solar cells revealed a maximum transmittance of 93.6% and minimum reflectance of 6.3%, achieved for A-IV sample in the visible UV spectrum. Sample A-IV showed prominent results in the temperature analysis with temperatures as low as 38.9°C in uncontrolled and 43.2°C in controlled source environments. The results from various analyses proved that MoS2 was an appropriate material for an antireflection coating to enhance the performance of polycrystalline solar cell.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48421300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A New Hybrid MPPT Based on Incremental Conductance-Integral Backstepping Controller Applied to a PV System under Fast-Changing Operating Conditions 基于增量电导积分反步控制器的新型混合MPPT应用于快速变化工况下的光伏系统
IF 3.2 4区 工程技术
International Journal of Photoenergy Pub Date : 2023-02-15 DOI: 10.1155/2023/9931481
Ambe Harrison, N. H. Alombah, Jean de Dieu Nguimfack Ndongmo
{"title":"A New Hybrid MPPT Based on Incremental Conductance-Integral Backstepping Controller Applied to a PV System under Fast-Changing Operating Conditions","authors":"Ambe Harrison, N. H. Alombah, Jean de Dieu Nguimfack Ndongmo","doi":"10.1155/2023/9931481","DOIUrl":"https://doi.org/10.1155/2023/9931481","url":null,"abstract":"Maximum power point tracking (MPPT) is becoming more and more important in the optimization of photovoltaic systems. Several MPPT algorithms and nonlinear controllers have been developed for improving the energy yield of PV systems. On the one hand, most of the conventional algorithms such as the incremental conductance (INC) demonstrate a good affinity for the maximum power point (MPP) but often fail to ensure acceptable stability and robustness of the PV system against fast-changing operating conditions. On the other hand, the MPPT nonlinear controllers can palliate the robust limitations of the algorithms. However, most of these controllers rely on expensive solar irradiance measurement systems or complex and relatively less accurate methods to seek the maximum power voltage. In this paper, we propose a new hybrid MPPT based on the incremental conductance algorithm and the integral backstepping controller. The hybrid scheme exploits the benefits of the INC algorithm in seeking the maximum power voltage and feeds a nonlinear integral backstepping controller whose stability was ensured by the Lyapunov theory. Therefore, in terms of characteristics, the overall system is a blend of the MPP-seeking potential of the INC and the nonlinear and robust potentials of the integral backstepping controller (IBSC). It was noted that the hybrid system successfully palliates the conventional limitations of the isolated INC and relieves the PV system from the expensive burden of solar irradiance measurement. The proposed hybrid system increased the operational efficiency of the PV system to 99.94% and was found better than the INC MPPT algorithm and 8 other recently published MPPT methods. An extended validation under experimental environmental conditions showed that the hybrid system is approximately four times faster than the INC in tracking the maximum power with better energy yield than the latter.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47340761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Thermal and Electrical Performance of Uncooled, Nature-Cooled, and Photovoltaic Thermal Module 非冷却、自然冷却和光伏热模块的热电性能
IF 3.2 4区 工程技术
International Journal of Photoenergy Pub Date : 2023-02-03 DOI: 10.1155/2023/4720545
Pushpendu Dwivedi, Sujay Ashwinraj Ganesh, K. Sudhakar, Archana Soni, S. Priya
{"title":"Thermal and Electrical Performance of Uncooled, Nature-Cooled, and Photovoltaic Thermal Module","authors":"Pushpendu Dwivedi, Sujay Ashwinraj Ganesh, K. Sudhakar, Archana Soni, S. Priya","doi":"10.1155/2023/4720545","DOIUrl":"https://doi.org/10.1155/2023/4720545","url":null,"abstract":"The experimental study is aimed at analyzing photovoltaic module’s thermal and electrical performance (PV) with back surface cooling under Malaysian tropical climate conditions. The performance of a passively cooled PV module integrated with biomaterial (moist coconut fiber) was compared with a photovoltaic thermal (PVT) system with water circulation at the rate of 0.02 kg s-1 and a reference PV module. The study observed that the passively cooled PV module succeeded in reducing the module surface temperature by more than 20%. However, the PVT system reduced the temperature only by less than 17%. The electrical energy efficiency was improved remarkably in the passively cooled PV module by almost 11%, but the PVT system managed to increase the electrical efficiency by 9%, approximately. It can be concluded that nature-inspired coconut fiber-based cooling can be one of the potential alternatives to active cooling methods.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47269023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信