Design and Simulation of a Cooling System for FTO/I-SnO2/CdS/CdTe/Cu2O Solar Cells

IF 2.1 4区 工程技术 Q3 CHEMISTRY, PHYSICAL
P. Khaledi, Mahdi Behboodnia
{"title":"Design and Simulation of a Cooling System for FTO/I-SnO2/CdS/CdTe/Cu2O Solar Cells","authors":"P. Khaledi, Mahdi Behboodnia","doi":"10.1155/2023/1718588","DOIUrl":null,"url":null,"abstract":"The temperature in solar cells is one of the main factors affecting their efficiency. Increasing the temperature in solar cells reduces efficiency. According to previously published and recently published studies by our team, with increasing temperature in 5-layer FTO/i-SnO2/CdS/CdTe/Cu2O solar cells, the efficiency has decreased by 8.86% per 100 K. In this research, phase change materials have been used to control the temperature in 5-layer solar cells. Our overall goal in this study is to control the temperature in FTO/i-SnO2/CdS/CdTe/Cu2O solar cells to increase their efficiency. The results obtained using simulations and numerical analysis and comparative analysis show that if one layer is used as a cooling arrangement in 5-layer FTO/i-SnO2/CdS/CdTe/Cu2O solar cells, it reduces the surface temperature of solar cells and increases efficiency.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Photoenergy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/1718588","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

Abstract

The temperature in solar cells is one of the main factors affecting their efficiency. Increasing the temperature in solar cells reduces efficiency. According to previously published and recently published studies by our team, with increasing temperature in 5-layer FTO/i-SnO2/CdS/CdTe/Cu2O solar cells, the efficiency has decreased by 8.86% per 100 K. In this research, phase change materials have been used to control the temperature in 5-layer solar cells. Our overall goal in this study is to control the temperature in FTO/i-SnO2/CdS/CdTe/Cu2O solar cells to increase their efficiency. The results obtained using simulations and numerical analysis and comparative analysis show that if one layer is used as a cooling arrangement in 5-layer FTO/i-SnO2/CdS/CdTe/Cu2O solar cells, it reduces the surface temperature of solar cells and increases efficiency.
FTO/I-SnO2/CdS/CdTe/Cu2O太阳能电池冷却系统的设计与仿真
太阳能电池的温度是影响其效率的主要因素之一。提高太阳能电池的温度会降低效率。根据我们团队之前和最近发表的研究,随着5层FTO/i-SnO2/CdS/CdTe/Cu2O太阳能电池温度的升高,效率每100 K下降8.86%。在本研究中,相变材料被用于控制5层太阳能电池的温度。本研究的总体目标是控制FTO/i-SnO2/CdS/CdTe/Cu2O太阳能电池的温度,以提高其效率。模拟、数值分析和对比分析结果表明,在5层FTO/i-SnO2/CdS/CdTe/Cu2O太阳电池中,采用一层作为冷却层,可以降低太阳电池的表面温度,提高效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.00
自引率
3.10%
发文量
128
审稿时长
3.6 months
期刊介绍: International Journal of Photoenergy is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of photoenergy. The journal consolidates research activities in photochemistry and solar energy utilization into a single and unique forum for discussing and sharing knowledge. The journal covers the following topics and applications: - Photocatalysis - Photostability and Toxicity of Drugs and UV-Photoprotection - Solar Energy - Artificial Light Harvesting Systems - Photomedicine - Photo Nanosystems - Nano Tools for Solar Energy and Photochemistry - Solar Chemistry - Photochromism - Organic Light-Emitting Diodes - PV Systems - Nano Structured Solar Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信