{"title":"FTO/I-SnO2/CdS/CdTe/Cu2O太阳能电池冷却系统的设计与仿真","authors":"P. Khaledi, Mahdi Behboodnia","doi":"10.1155/2023/1718588","DOIUrl":null,"url":null,"abstract":"The temperature in solar cells is one of the main factors affecting their efficiency. Increasing the temperature in solar cells reduces efficiency. According to previously published and recently published studies by our team, with increasing temperature in 5-layer FTO/i-SnO2/CdS/CdTe/Cu2O solar cells, the efficiency has decreased by 8.86% per 100 K. In this research, phase change materials have been used to control the temperature in 5-layer solar cells. Our overall goal in this study is to control the temperature in FTO/i-SnO2/CdS/CdTe/Cu2O solar cells to increase their efficiency. The results obtained using simulations and numerical analysis and comparative analysis show that if one layer is used as a cooling arrangement in 5-layer FTO/i-SnO2/CdS/CdTe/Cu2O solar cells, it reduces the surface temperature of solar cells and increases efficiency.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design and Simulation of a Cooling System for FTO/I-SnO2/CdS/CdTe/Cu2O Solar Cells\",\"authors\":\"P. Khaledi, Mahdi Behboodnia\",\"doi\":\"10.1155/2023/1718588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The temperature in solar cells is one of the main factors affecting their efficiency. Increasing the temperature in solar cells reduces efficiency. According to previously published and recently published studies by our team, with increasing temperature in 5-layer FTO/i-SnO2/CdS/CdTe/Cu2O solar cells, the efficiency has decreased by 8.86% per 100 K. In this research, phase change materials have been used to control the temperature in 5-layer solar cells. Our overall goal in this study is to control the temperature in FTO/i-SnO2/CdS/CdTe/Cu2O solar cells to increase their efficiency. The results obtained using simulations and numerical analysis and comparative analysis show that if one layer is used as a cooling arrangement in 5-layer FTO/i-SnO2/CdS/CdTe/Cu2O solar cells, it reduces the surface temperature of solar cells and increases efficiency.\",\"PeriodicalId\":14195,\"journal\":{\"name\":\"International Journal of Photoenergy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Photoenergy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/1718588\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Photoenergy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/1718588","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Design and Simulation of a Cooling System for FTO/I-SnO2/CdS/CdTe/Cu2O Solar Cells
The temperature in solar cells is one of the main factors affecting their efficiency. Increasing the temperature in solar cells reduces efficiency. According to previously published and recently published studies by our team, with increasing temperature in 5-layer FTO/i-SnO2/CdS/CdTe/Cu2O solar cells, the efficiency has decreased by 8.86% per 100 K. In this research, phase change materials have been used to control the temperature in 5-layer solar cells. Our overall goal in this study is to control the temperature in FTO/i-SnO2/CdS/CdTe/Cu2O solar cells to increase their efficiency. The results obtained using simulations and numerical analysis and comparative analysis show that if one layer is used as a cooling arrangement in 5-layer FTO/i-SnO2/CdS/CdTe/Cu2O solar cells, it reduces the surface temperature of solar cells and increases efficiency.
期刊介绍:
International Journal of Photoenergy is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of photoenergy. The journal consolidates research activities in photochemistry and solar energy utilization into a single and unique forum for discussing and sharing knowledge.
The journal covers the following topics and applications:
- Photocatalysis
- Photostability and Toxicity of Drugs and UV-Photoprotection
- Solar Energy
- Artificial Light Harvesting Systems
- Photomedicine
- Photo Nanosystems
- Nano Tools for Solar Energy and Photochemistry
- Solar Chemistry
- Photochromism
- Organic Light-Emitting Diodes
- PV Systems
- Nano Structured Solar Cells