{"title":"Characterization of Ca-doped YCoO3 Perovskite-type oxide as cathode for solid oxide fuel cells","authors":"Masatsugu Oishi, Akihiro Takagi, Akihiro Takamatsu, Takaaki Sakai","doi":"10.1142/s0217979224400083","DOIUrl":"https://doi.org/10.1142/s0217979224400083","url":null,"abstract":"Solid oxide fuel cell (SOFC) uses solid oxide as an electrolyte and has a high-power generation efficiency. One of the major problems in the development of SOFC is the side reaction that occurs at the interface between the electrode and the electrolyte. (Y, Ca)CoO[Formula: see text] materials were evaluated as a new air electrode material to replace the conventional (La, Sr)CoO3 materials. Y[Formula: see text]Ca[Formula: see text]CoO[Formula: see text] has good compatibility with Y-stabilized ZrO2 (YSZ) electrolyte. In addition, the power generation performance was equal to or better than the conventional SOFC cells.","PeriodicalId":14108,"journal":{"name":"International Journal of Modern Physics B","volume":"52 10","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139007027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nonlinear metaheuristic cost optimization and ANFIS computing of feedback retrial queue with two dependent phases of service under Bernoulli working vacation","authors":"N. M. Mathavavisakan, K. Indhira","doi":"10.1142/s0217979224400046","DOIUrl":"https://doi.org/10.1142/s0217979224400046","url":null,"abstract":"Today, with real-life problems, modeling is a primary step in organizing, analyzing and optimizing them. Queueing theory is a particular approach used to model this category of issues. Space constraints, feedback, service dependency, etc. are often inseparable from the issues they create. In light of this objective, this research presents a model and analysis of the steady-state behavior of an [Formula: see text] feedback retrial queue with two dependent phases of service under a Bernoulli vacation policy. The service times for the two stages are often independent in normal queueing frameworks. We presume that they are dependent random variables in this case. Indeed, this dependence is one-way (i.e., the service time of the second phase has no effect on the service time of the first phase). Yet, the first phase service time has an impact on the second phase service time. In order to determine the steady-state probabilities and probability-generating functions (PGF) for the different states, the supplementary variable technique (SVT) was utilized. Furthermore, a broad range of performance metrics had been established. The generated metrics are then envisioned and validated with the aid of graphs and tables. Additionally, a nonlinear cost function is constructed, which is subsequently minimized by distinct approaches like particle swarm optimization (PSO), artificial bee colony (ABC) and genetic algorithm (GA). Furthermore, we used certain figures to examine the convergence of these optimization methods. Finally, validation outcomes are compared with neuro-fuzzy results generated with the “adaptive neuro-fuzzy inference system” (ANFIS).","PeriodicalId":14108,"journal":{"name":"International Journal of Modern Physics B","volume":"55 13","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139006911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Influence of complete slip conditions on peristaltic transport of third-grade fluid with suction and injection","authors":"R. Lakshmi, A. Kavitha","doi":"10.1142/s0217979224400058","DOIUrl":"https://doi.org/10.1142/s0217979224400058","url":null,"abstract":"This study is important for the fields of pharmaceutical nano-drug suspension, biomedical engineering, pressure surges and food processing systems. The slip condition is necessary for polishing internal cavities and artificial heart valves in a variety of manufactured objects, micro- or nano-channels, and applications. Low Reynolds number (Re[Formula: see text] and long wavelength ([Formula: see text]) considerations are used in the formulation of the mathematical model at low non-Newtonian parameter values, nonlinear boundary conditions and the governing nonlinear equation are analytically solved using the perturbation method. The graphs of frictional force, pressure rise, velocity, pressure gradient, and streamline graphs are done using Wolfram MATHEMATICA software. In this paper, we compared the results of the total slip condition with those of the first-order slip condition and the absence of any slip effects. It has been noticed that increasing the suction and injection parameters leads to a decrease the pressure rate with complete slip effects, partial slip effects and no slip effects. We show that an increase in the third grade fluid parameter [Formula: see text] increases the magnitude of axial velocity. From a physical perspective, it shows the shear thinning characteristic, which causes a decrease in viscosity and an increase in fluid velocity. Frictional force behaves differently when compared to pressure rate. In other words, the pressure gradient acts as an obstacle to the peristalsis-driven flow. The objective of the study is to find the impact of the peristaltic flow phenomena and the impact of peristaltic on third-grade non-Newtonian fluid where the suction and injection are prevailing which is similar to the thing in biomechanical devices, like blood vessels, etc. there is a change of oxygen and carbon dioxide from the tissue layer to the fluid within the blood vessel.","PeriodicalId":14108,"journal":{"name":"International Journal of Modern Physics B","volume":"42 30","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138588361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"QSAR Analysis for the class of silicon carbide structures","authors":"A. Divya, A. Manimaran","doi":"10.1142/s0217979224400022","DOIUrl":"https://doi.org/10.1142/s0217979224400022","url":null,"abstract":"Graph theory has many applications in chemistry and is used to analyze molecular structures. Topological descriptors are numerical numbers that contain chemical information and provide structural features of a compound associated with a chemical approach. The purpose of the topological index is to study the physicochemical properties of molecular structures. This paper investigates the molecular graph of 2D silicon carbide structures. The scope of this paper is to determine the highest thermal stability property among silicon carbide structures using topological indices.","PeriodicalId":14108,"journal":{"name":"International Journal of Modern Physics B","volume":"9 5","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138590152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Umashankara Raja, R. Munirathnam, Y. S. Vidya, H. C. Manjunatha, K. N. Sridhar, K. M. Rajashekara, S. Manjunatha, L. Seenappa
{"title":"Green synthesis of chromium substituted calcium hexaferrite nanoparticles for high-frequency applications","authors":"R. Umashankara Raja, R. Munirathnam, Y. S. Vidya, H. C. Manjunatha, K. N. Sridhar, K. M. Rajashekara, S. Manjunatha, L. Seenappa","doi":"10.1142/s0217979224503818","DOIUrl":"https://doi.org/10.1142/s0217979224503818","url":null,"abstract":"For the first of its kind, Cr[Formula: see text]-substituted calcium hexaferrite (CaCr x Fe[Formula: see text]O[Formula: see text] ([Formula: see text], 3, 5 and 7)) nanoparticles (NPs) were synthesized via a facile, economical, eco-friendly lemon juice extract mediated green solution combustion method. The samples were calcined followed by characterization. The Bragg reflections confirm the formation of a single phase M-type hexaferrite crystal structure. No other impurity or mixed phases are observed even after the substitution of Cr[Formula: see text] to the host matrix. Meanwhile, the crystallite size decreases from 29.44 to 19.92[Formula: see text]nm with an increase in the substitution of Cr[Formula: see text] ions. The surface morphological analysis shows the presence of agglomerated irregularly shaped NPs. The direct energy band gap estimated using Wood and Tauc’s relation depicts the decrease in energy band gap from 2.98 to 2.74[Formula: see text]eV with an increase in the substitution of Cr[Formula: see text] ions. These Cr[Formula: see text]-substituted calcium hexaferrite NPs were predicted to be useful in high-frequency applications based on structural, dielectric, and magnetic studies.","PeriodicalId":14108,"journal":{"name":"International Journal of Modern Physics B","volume":"27 19","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135873447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abida Shaheen, Hassan Waqas, Muhammad Imran, Mohsan Raza, Saima Rashid
{"title":"The effects of thermal radiation and heat source/sink on the flow and heat transfer characteristics of a hybrid nanofluid over a vertical stretching cylinder: Regression analysis","authors":"Abida Shaheen, Hassan Waqas, Muhammad Imran, Mohsan Raza, Saima Rashid","doi":"10.1142/s0217979224503971","DOIUrl":"https://doi.org/10.1142/s0217979224503971","url":null,"abstract":"Originality: A novel category of working fluids, consisting of two substantial components diffused in a conventional fluid, has been identified and investigated widely in recent years. These types of fluids are called hybrid nanofluids. Problem statement: A wide range of engineering and industrial structures, including heat-transferring components, energy production, extrusion procedures, engine cooling purposes, thermal structures, thermal exchangers, chemical procedures, manufacturing processes and hybrid power plants, have been proposed for use with nanomaterials with improved thermal properties. These nanomaterial-based applications hold the promise of improved performance and efficiency in a variety of technological and industrial processes. The heat transmission and magnetohydrodynamic stagnation significance flow of hybrid nanofluids Fe 3 O 4 –ZrO 2 and Fe 3 O 4 /water, the form factor of a stretched cylinder under the influence of heat production, nonlinear thermal radiation and nanoparticle volume fractions have been investigated in this study. Methodology: Utilizing proper similarity transformations, the processes of partial differential equations are further transformed into nondimensional solutions of ordinary differential equations. The bvp4c approach is employed to achieve a numerical solution. The flow and temperature profiles are displayed as a function of the contained factors. Graphs show the effects of changing the physical characteristics involved. Tables emphasize the skin friction factor and Nusselt numbers. Results: The temperature profile of fluids diminished due to an increment in the values of the temperature relaxation parameter and Eckert number. When the porosity factor is increased the temperature of fluids is improved. The effects of streamlines for various components are discussed. The 3D surface, contour plots and residual plots for various factors have also been investigated. Applications: Hybrid nanofluids have the potential to improve heat transfer efficiency in a variety of technical applications, including cooling structures, heat exchangers and thermal energy storage systems.","PeriodicalId":14108,"journal":{"name":"International Journal of Modern Physics B","volume":"220 S1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135974718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of rotation on thermal instability under Hele-Shaw cell saturated by Casson nanofluid","authors":"None Ismail, B. S. Bhadauria, Anurag Srivastava","doi":"10.1142/s0217979224504058","DOIUrl":"https://doi.org/10.1142/s0217979224504058","url":null,"abstract":"This paper examines the effect of rotation on thermal instability under Hele-Shaw cell saturated by Casson nanofluid using both linear and nonlinear ways. The nanofluid model incorporates Brownian and thermophoresis diffusion. While conducting an analysis of nonlinear stability numerically using the truncated Fourier series method, analysis of linear stability is performed analytically using the normal mode methodology. The outcomes are all displayed graphically. The results demonstrate that the rotation has dual effect on Hele-Shaw parameter as well as Casson parameter, for higher value of rotation it has destabilizing effect and it stabilizing the system for lower values of rotation. Lewis number and concentration Rayleigh number promote the onset of convective motion within the system. On the other hand, rotation stabilize the system. Understanding the behavior of heat and mass transportation, the concentration of nanoparticles and fluid phase, utilize the Nusselt number when Nusselt numbers are assessed as a function of time, it is found that the variation of the rotation, Hele-Shaw and Casson parameter has a major influence on the heat and mass transfer. Both steady and unsteady weakly nonlinear analyses are performed to understand the heat transport in the system. It is concluded that the Casson nanofluid parameter has both stabilizing and destabilizing impact depending upon the rate of rotation and therefore this work can be possibly utilized in both places, where heat removal and heat conservation are required.","PeriodicalId":14108,"journal":{"name":"International Journal of Modern Physics B","volume":"217 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135974555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design and construction of tunable solid-state dye laser pumped by flashlamp","authors":"Hamdan A. S. Al-Shamiri","doi":"10.1142/s0217979224504046","DOIUrl":"https://doi.org/10.1142/s0217979224504046","url":null,"abstract":"Over the past six decades, dye laser technology has improved substantially. The usage of solid matrices containing laser dyes is becoming more and more popular as a viable substitute for the traditional liquid dye solutions. In this research, we designed and built a tunable solid dye laser device which consists of three main parts. (i) The active material producing the laser beam, which is a polymer rod [glycidyl methacrylate (GMA) polymer] doped with the laser dyes pyrromethene 597 (PM-597) or Nile blue (Nb-690). (ii) The pumping source is xenon linear flashlamp driven by a homemade power supply. (iii) Two broadband mirrors providing the optical feedback stable optical resonator. The properties of the gain medium and hence the laser emission characteristics were determined, and the results showed the efficiency of the homemade tunable solid dye laser device, that is suitable for a variety of applications.","PeriodicalId":14108,"journal":{"name":"International Journal of Modern Physics B","volume":"206 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135974424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Low-frequency band gap and wave attenuation mechanisms of novel hybrid chiral metamaterials","authors":"Shu-Liang Cheng, Hong-Yun Yang, Xiu-Hong Du, Qian Ding, Qun Yan, Yong-Tao Sun, Ya-Jun Xin, Liang Wan, Jin-Xin Xu","doi":"10.1142/s0217979224504034","DOIUrl":"https://doi.org/10.1142/s0217979224504034","url":null,"abstract":"Based on the hexagonal honeycomb structure and the tri-ligament chiral honeycomb structure, this paper proposes a hybrid material structure with low-frequency elastic wave suppression below 100[Formula: see text]Hz. Based on the finite element method and Bloch’s theorem, the energy band structure was calculated, and the formation of the band gap and the wave-propagation properties of the structure were carefully studied, the wave attenuation performance of the composite structure was simulated, and the influence of material properties and geometric parameters on the width and position of the band-gap distribution was discussed. The results show that the structure can generate a good band gap in the low-frequency range of 100[Formula: see text]Hz, and the wave propagation is suppressed obviously. Demonstrating its potential in practical applications, the research in this paper provides a theoretical basis for the manufacture of low-frequency vibration damping equipment and instruments, and provides a scheme for the design of metamaterials with low-frequency band gaps.","PeriodicalId":14108,"journal":{"name":"International Journal of Modern Physics B","volume":"220 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135974717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Author index Volume 37","authors":"","doi":"10.1142/s0217979223990011","DOIUrl":"https://doi.org/10.1142/s0217979223990011","url":null,"abstract":"","PeriodicalId":14108,"journal":{"name":"International Journal of Modern Physics B","volume":"45 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136104791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}