Fangyan Zheng, Shuai Xin, Xinghui Han, Lin Hua, Wuhao Zhuang, Xuan Hu, Fang Chai
{"title":"Heavy-load Nonapod: A novel flexible redundant parallel kinematic machine for multi-DoF forming process","authors":"Fangyan Zheng, Shuai Xin, Xinghui Han, Lin Hua, Wuhao Zhuang, Xuan Hu, Fang Chai","doi":"10.1016/j.ijmachtools.2024.104183","DOIUrl":"https://doi.org/10.1016/j.ijmachtools.2024.104183","url":null,"abstract":"<div><p>The high-performance multi-DoF forming process (MDFP) necessitates a 6-DoF forming machine tool with high normal and lateral stiffness to bear large normal and lateral forming force of millions of Newton (MN). However, the payload of parallel kinematic machine (PKM) is generally limited to thousands of Newton (kN), which restricts its application in MDFP. Therefore, this paper aims to develop a novel heavy load PKM with high stiffness for MDFP. To maximise the normal stiffness, a 6-PSS PKM with zero base angle and horizontal driver is proposed. Further, the inner force transfer model of 6-PSS PKM is established, indicating that the normal stiffness will be maximised when the link force approaches to be vertical. Consequently, a design criterion for maximising normal stiffness, i.e., the root mean square error (RMSE) for horizontal projection of all links should be minimised, is established. To maximise the lateral stiffness, general force balance equations of 6-PSS PKM are derived, indicating that lateral force can cause unintended negative force of links, significantly reducing the lateral stiffness. Thus, a novel auxiliary 3-SPS configuration is employed to provide additional force system to mitigate this negative force via hydraulic links. Correspondingly, a design criterion for maximising lateral stiffness, i.e., all link force should remain positive, is proposed. By combining aforementioned design criterion and kinetostatic models, a near-singular 6-PSS PKM with maximising normal stiffness is achieved, and dimension parameters of 3-SPS PKM with maximising lateral stiffness are optimised. On this basis, a novel flexible redundant 6-PSS/3-SPS PKM with both high normal and lateral stiffness is proposed, and a novel heavy load Nonapod with payload of 8 MN and payload-mass ratio of 40 is developed, showing good stiffness performance. The plastic deformation mechanisms of multi-DoF formed aviation bevel gear are revealed, and experimentally formed aviation bevel gear in the new Nonapod achieves good accuracy, microstructure and mechanical performance. This work provides a new methodology for synthesis of heavy load PKM with high normal and lateral stiffness, and has significant application prospect in PKM under heavy load working condition.</p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"200 ","pages":"Article 104183"},"PeriodicalIF":14.0,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141539868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Macro and micro-scale material removal mechanisms during ECM/hybrid laser-ECM of a passivating multiphase NbC–Ni cermet","authors":"Muhammad Hazak Arshad , Krishna Kumar Saxena , Shuigen Huang , Dominiek Reynaerts","doi":"10.1016/j.ijmachtools.2024.104182","DOIUrl":"https://doi.org/10.1016/j.ijmachtools.2024.104182","url":null,"abstract":"<div><p>Electrochemical machining (ECM) is a non-contact and athermal machining process where the material removal is accomplished through controlled anodic dissolution of the workpiece governed by Faraday laws. ECM process has been hybridized with several other processes for improving material processing windows. Hybrid laser electrochemical machining (LECM) synergistically applies electrochemical and laser process energies with added benefits of escalated reaction kinetics leading to enhanced transpassive dissolution, weakening of passivation layer, process localisation and uniform dissolution. The laser energy acts as a localised and controllable heat source thereby offering multi-fold processing benefits. For alloys and cermets, a characteristic surficial fingerprint is the presence of inhomogeneous multiphase dissolution and sporadically distributed passivation layer, necessitating addition of aggressive reagents in electrolytes. LECM has the potential to addresses these challenges while processing in pH neutral electrolytes. Previous works have very limited analysis on the macro and micro removal mechanisms while processing relevant strategic materials and multitude of applications of LECM remain unexploited. Therefore, this work presents in-depth investigations into macro and micro-scale material removal mechanisms of ECM/LECM on sintered niobium carbide with nickel binder (NbC–Ni), which is a potential cobalt-free alternative to tungsten carbide. The results revealed new insights into the removal behaviour of the constituent phases which differed from the first principles and their interaction with the laser. During ECM, the Ni phase dissolved preferentially and influenced the surface pattern and particle breakout which was reduced with laser assistance. The surface evolution characteristics were also analysed based on the ridge-crevice pattern. Additionally, the weakening of passive layer was correlated with the pulse analysis that revealed quantitatively the different process regimes occurring during ECM and LECM. The grain level study revealed that orientation effects still exist during LECM and the grains with higher surface energy (FCC (001) vicinal planes) passivated more and dissolved less. Furthermore, the improvement in surface quality, overcut and reduction in particle breakout with LECM process makes it promising for machining newer recipes of metal carbides.</p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"200 ","pages":"Article 104182"},"PeriodicalIF":14.0,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141542804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuya Zhang , Chunxia Yao , Dongsheng Zhang , Wei Liu , Lin He , Dafan Du , Baode Sun , Anping Dong , Bingbing Zhang , Lianghua Xiong
{"title":"Dynamics of pore formation and evolution during multi-layer directed energy deposition additive manufacturing via in-situ synchrotron X-ray imaging: A case study on high-entropy Cantor alloy","authors":"Shuya Zhang , Chunxia Yao , Dongsheng Zhang , Wei Liu , Lin He , Dafan Du , Baode Sun , Anping Dong , Bingbing Zhang , Lianghua Xiong","doi":"10.1016/j.ijmachtools.2024.104181","DOIUrl":"10.1016/j.ijmachtools.2024.104181","url":null,"abstract":"<div><p>Blown-powder directed energy deposition (DED) additive manufacturing is impeded for novel alloys processing by perceivable and detrimental porosity. During multi-layer depositions, however, mechanisms of pore formation and evolution remain elusive for developing pore mitigation strategies. Here, conduction-mode multi-layer DED process of an exemplary high-entropy Cantor alloy have been investigated in-situ by high-energy high-speed synchrotron X-ray imaging. Three new pore formation mechanisms are unveiled when depositing first layer and successive layers: gas pore induced by high-velocity powder injection into melt pool, pore generated from swirl shear of turbulent melt flow, and pore trapped by surface wave. Three pore formation mechanisms are reconfirmed: pore inheritance from feedstock powder, pore generation when laser remelting defect-sensitive locations of existing pore from previous layer or unmelted powder attached on the melt pool surface, and pore formation as cooling of melt pool. A unique mechanism for pore elimination is proposed: a counter-Marangoni melt flow is experimentally found in the stable melt pool and contributes to the prolonged pore lifetime at tens of milliseconds scale; pores are prone to coalesce into larger sizes in laser interaction zone and the adjacent location with circulation zone; coalesced larger pores driven by combined effect of Marangoni and buoyant forces easily get eliminated from melt pool. The results of pore formation and evolution dynamics revealed in Cantor alloy provide quantified experimental data for high-fidelity computational modeling and in-depth insights of porosity control for high-entropy alloy printing down to melt pool scale.</p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"200 ","pages":"Article 104181"},"PeriodicalIF":14.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141464206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiang Xu , Jialong Du , Haifei Lu , YouYu Su , Fei Xing , Kaiyu Luo , Jinzhong Lu
{"title":"High-performance functional coatings manufactured by integrated extremely high-speed-rate laser directed energy deposition with interlayer remelting","authors":"Xiang Xu , Jialong Du , Haifei Lu , YouYu Su , Fei Xing , Kaiyu Luo , Jinzhong Lu","doi":"10.1016/j.ijmachtools.2024.104174","DOIUrl":"https://doi.org/10.1016/j.ijmachtools.2024.104174","url":null,"abstract":"<div><p>Extremely high-speed-rate laser directed energy deposition has attracted considerable attention for large-scale industrial component manufacturing owing to its outstanding fabrication efficiency. However, interlayer metallurgical defects and thickness fluctuation stacking caused by the previous non-uniform rough surface layer hinder the preparation of customized thicknesses of large-scale components with high performance. Herein, an integrated extremely high-speed-rate additive manufacturing technology, that is, extremely high-speed-rate laser-directed energy deposition accompanied by extremely high-speed-rate laser remelting, is proposed to eliminate porosity and reconstruct the microstructure of multilayer parts. The remelted specimens exhibited uniform roughness and ultrafine grains when defocusing amount was less than zero. The relatively lower temperature gradient G and morphology factor G/R in the remelting process led to more favorable subcooling, which further promoted more nucleation sites and contributed to grain refinement and columnar-to-equiaxed transition. A multilayer 316 L stainless steel material with an interlayer remelting treatment was further prepared, and a typical heterogeneous structure dominated by ultrafine equiaxed grains was obtained. The multilayer specimen characterized by such a special structure exhibited a higher yield strength of 546 MPa, along with a ductility of 49.1 %. This novel integrated manufacturing technology highlights a new strategy that can expand the extremely high-speed-rate additive manufacturing window and achieve simultaneous improvements in the manufacturing efficiency and performance of large-scale components.</p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"200 ","pages":"Article 104174"},"PeriodicalIF":14.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141290165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guilin Zhuang , Hanzhong Liu , Zhimin Cao , Zhipeng Cui , Yifu Tang , Wenjun Zong
{"title":"An insight into the influence of precipitation phase on the surface quality in diamond turning of an Aluminium alloy","authors":"Guilin Zhuang , Hanzhong Liu , Zhimin Cao , Zhipeng Cui , Yifu Tang , Wenjun Zong","doi":"10.1016/j.ijmachtools.2024.104163","DOIUrl":"https://doi.org/10.1016/j.ijmachtools.2024.104163","url":null,"abstract":"<div><p>Diamond turning is an effective technology for processing metal mirrors used in photoelectric communications, radar, and other fields. In diamond turning, the precipitated phase is an essential factor that influences the surface quality of the metal mirrors. However, in previous studies, the precipitation phase has typically been handled as a random variable in a surface morphology model to evaluate its influence on the surface roughness, instead of determining the formation mechanism and proposing suppression solutions. In this study, a new phenomenon is observed in the diamond turning of metal mirrors, that is, the micro diamond tool can reduce the protrusion of the precipitated phase under a small feed rate and improve the surface quality. Investigating the turning process using diamond tools with varying tool nose radii at small feed rates (<1 μm/r), the underlying transformation mechanism of the precipitation phase is determined with the advanced material characterization technologies. The growth of the precipitated phase with an increase in the tool nose radius is explained using the energy gradient theory. The results showed that the increased material strain on the machined surface decreased the activation energy of solute diffusion in the material, causing solute accumulation and precipitate phase growth. With a further increase of tool nose radius to around 1000 μm, the β'' phase breaks and rotates. The representative volume element method shows that when undergoing severe plastic deformation, dislocations and grain boundaries quickly aggregate and slide on the precipitated phase, which will lead to the fracture and rotation of β'' phase. These findings provide a theoretical basis for the development of highly smooth mirrors.</p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"199 ","pages":"Article 104163"},"PeriodicalIF":14.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140914159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Area selective deposition for bottom-up atomic-scale manufacturing","authors":"Rong Chen, Eryan Gu, Kun Cao, Jingming Zhang","doi":"10.1016/j.ijmachtools.2024.104173","DOIUrl":"10.1016/j.ijmachtools.2024.104173","url":null,"abstract":"<div><p>Area selective deposition, which streamlines fabrication steps by enhancing precision and reliability, represents a cutting-edge, bottom-up atomic and close-to-atomic scale manufacturing processing. This perspective delves into the essence of area selective atomic layer deposition, exploring the critical mechanisms and additional strategies that enhance the effectiveness of area selective deposition processes. A pivotal emphasis is placed on the thermodynamic and kinetic principles driving nucleation and film growth, coupled with a thorough examination of these underlying processes. Several assisted techniques aiming at improving selectivity and enlarging the selective process window, including surface passivation, activation, deactivation, and defect elimination have been summarized. The introduction of a comprehensive area selective deposition nucleation model illuminates the complex dynamics of area selective deposition, laying a theoretical groundwork for refining deposition processes. The technical and scientific challenges associated with area selective deposition, along with the prospects for its future development and industrial application, form a key part of this perspective. By enabling atomic-level accuracy, area selective deposition paves the way for the fabrication of complex nanostructures, promising significant advancements across the semiconductor industry and a broad spectrum of technological applications, unlocking unparalleled possibilities in precision manufacturing, setting the stage for breakthroughs that will redefine the landscape of modern technology.</p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"199 ","pages":"Article 104173"},"PeriodicalIF":14.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141041217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhuohong Zeng , Shubo Gao , Deepak Kumar Pokkalla , Sheng Zhang , Changjun Han , Feng Liu , Zhongmin Xiao , Sastry Yagnanna Kandukuri , Yong Liu , Kun Zhou
{"title":"Additive manufacturing of metallic metamaterials with enhanced mechanical properties enabled by microstructural and structural design","authors":"Zhuohong Zeng , Shubo Gao , Deepak Kumar Pokkalla , Sheng Zhang , Changjun Han , Feng Liu , Zhongmin Xiao , Sastry Yagnanna Kandukuri , Yong Liu , Kun Zhou","doi":"10.1016/j.ijmachtools.2024.104172","DOIUrl":"10.1016/j.ijmachtools.2024.104172","url":null,"abstract":"<div><p>The emergence of additive manufacturing (AM) facilitates the fabrication of lightweight mechanical metamaterials characterized by intricate geometrical features. Here, we focus on the contributions of microstructural and structural design to the significant performance enhancement of metamaterials. Cubic plate-lattices featuring spherical holes were produced using laser powder bed fusion. Different from commonly used optimization of AM parameters to change the thermal histories and the resulting properties, we employ a simple strategy inspired by the crystallographic and AM features—tilting the build orientation. Compared to the normal build orientation, the tilted build orientation converts the printed microstructure of the plate-lattices from (100)-dominated to (111)- and (101)-dominated crystallographic texture and significantly refines the grain size, leading to remarkable 30% and 10% increases in the compressive strength and strain of the printed plate-lattices, respectively. For further tailoring the performance of metamaterials, we integrate a wavy plate topology design to improve the isotropy of properties and increase the impact attenuation. Our work paves the way to optimize additively manufactured metamaterials by combining microstructural and structural designs.</p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"199 ","pages":"Article 104172"},"PeriodicalIF":14.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141024720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yizhong Hu , Xiaohan Zhang , Hongtao Ding , Yaowu Hu
{"title":"Laser shock-enabled optical–thermal–mechanical coupled welding method for silver nanowires","authors":"Yizhong Hu , Xiaohan Zhang , Hongtao Ding , Yaowu Hu","doi":"10.1016/j.ijmachtools.2024.104162","DOIUrl":"https://doi.org/10.1016/j.ijmachtools.2024.104162","url":null,"abstract":"<div><p>Silver nanowires (AgNWs) are recognized as highly promising materials for flexible and transparent electrode applications. However, existing material-processing methods fail to achieve uniform and reliable AgNWs junctions. In this study, we propose a new method using the laser shock effect combined with the laser heating effect, for creating AgNW junctions within thin films. We explored the welding mechanism of AgNWs through optic-thermal welding, laser shock-enabled mechanical welding, and laser-shock-enabled optical-thermal-mechanical (LS-OTM) experiments, as well as numerical simulations, and the results demonstrate that the innovative mechanism of the LS-OTM process lies in its utilization of laser shock to adjust the gap between the nanowire junctions, which in turn achieves a fine control of the thermal effect of the heating laser localised surface plasmon resonance, and the atomic diffusion in the solid state at intermediate temperature under the action of the impact force is the mechanism of the formation of high-quality junctions. We prepared flexible transparent conductive films and studied their transmittance, conductivity, and thermal properties, the results show that the flexible transparent conductive films prepared by LS-OTM welding method have excellent transmittance, conductivity, and thermal properties, this verifies the feasibility and effectiveness of this processing strategy. The LS-OTM method is a viable solution for manufacturing transparent, conductive films from AgNWs for emerging applications such as flexible heated films, flexible displays, and wearable medical devices.</p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"199 ","pages":"Article 104162"},"PeriodicalIF":14.0,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140641100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kai Ma , Zhanqiang Liu , Bing Wang , Qinghua Song , Yukui Cai
{"title":"How does the uncut chip thickness affect the deformation states within the primary shear zone during metal cutting?","authors":"Kai Ma , Zhanqiang Liu , Bing Wang , Qinghua Song , Yukui Cai","doi":"10.1016/j.ijmachtools.2024.104161","DOIUrl":"https://doi.org/10.1016/j.ijmachtools.2024.104161","url":null,"abstract":"<div><p>The deformation states within the primary shear zone (PSZ) significantly affect material removal during machining. Uncut chip thickness (UCT) is an important factor that influences the material deformation states. However, the specific mechanism by which UCT influences the deformation states within PSZ remains unknown. This study aims to investigate the relationship between the deformation states in PSZ and UCTs via in-situ measurement and microscopic characterization techniques. Using the digital image correlation (DIC) technique, strain and strain rate distributions were derived to reveal the discrepant deformation in PSZ with increasing UCT. Furthermore, velocity vector fields and Electron Back-Scattered Diffraction (EBSD) characterizations were employed to examine the heterogeneity of deformation modes. To determine the specific deformation information, a deformation extraction framework based on the deformation gradient tensor theory was developed. Thus, strong and weak shear modes within PSZ were revealed based on the full-field deformation information of compression and extension. As the UCT increased, the transition of deformation states from a strong shear state to a hybrid shear state was determined. This work presents a new understanding of the deformation mechanism within PSZ in a ductile material of pure iron. A critical UCT was proposed to guide the cutting process to avoid inefficient weak shear mode.</p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"199 ","pages":"Article 104161"},"PeriodicalIF":14.0,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140645579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Geometric deviation during incremental sheet forming process: Analytical modeling and experiment","authors":"Zhidong Chang , Mei Yang , Jun Chen","doi":"10.1016/j.ijmachtools.2024.104160","DOIUrl":"https://doi.org/10.1016/j.ijmachtools.2024.104160","url":null,"abstract":"<div><p>Incremental sheet forming (ISF), a promising and flexible forming method, is generally restricted by the unsatisfied geometric deviation for industrial applications; therefore, effective control and accurate prediction of geometric deviation in ISF are essential for quality improvement. However, the geometric deviation in ISF is extremely sensitive to the geometric shape, toolpath, and process parameters, which is challenging to predict and control. In this study, the comprehensive geometric-related mechanisms in ISF were analyzed, including springback after local bending of the bent and contact zones, and the elastic deflection of the inclined wall, particularly the associated deformation in the weak-stiffness region. Through a creative equivalent mapping method for calculating the elastic deflection of complex structures and modeling the bending moment distribution in different zones, an analytical model was developed to accurately and universally predict the geometric deviations of parts by ISF. Based on the results of the experiments and comparative studies using a response surface model, the proposed model provided superior capability for predicting the geometric accuracies of parts made using ISF with different sheet materials, process parameters, and geometric shapes, even for complex parts with non-axisymmetric structures and stepped features. The geometric-related mechanisms, forming characteristics, and influences of crucial parameters in ISF are discussed by adopting an analytical model combined with numerical simulations, demonstrating that the elastic deflection on the inclined wall, particularly the associated deformation in the weak-stiffness region, plays a primary role in the geometric deviation of complex parts compared with other geometric-related mechanisms.</p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"198 ","pages":"Article 104160"},"PeriodicalIF":14.0,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140646366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}