International Journal of Machine Tools & Manufacture最新文献

筛选
英文 中文
Portable robotised machines tools (RoboMach), for in-situ inspection and (re)manufacture: Research challenges and opportunities 用于现场检测和(再)制造的便携式机器人机床(RoboMach):研究挑战与机遇
IF 14 1区 工程技术
International Journal of Machine Tools & Manufacture Pub Date : 2024-02-01 DOI: 10.1016/j.ijmachtools.2024.104115
D. Axinte
{"title":"Portable robotised machines tools (RoboMach), for in-situ inspection and (re)manufacture: Research challenges and opportunities","authors":"D. Axinte","doi":"10.1016/j.ijmachtools.2024.104115","DOIUrl":"10.1016/j.ijmachtools.2024.104115","url":null,"abstract":"<div><p>Machine tool have traditionally been developed for the manufacture of new parts and to be operated in workshop environments. With a remit of addressing clearly defined tasks, the concepts/configurations of these are nowadays, somehow, standard. This perspective intends to flag up to the community the relatively unexplored topic of portable Robotised Machine (RoboMach) tools that address the need for in-situ maintenance and repair of industrial installations. By the immense variety of tasks that RoboMach are designed to fulfil, there is an open ground for exploring, at the confluence with other complementary research disciplines, novel machine tool configurations that could open fresh academic challenges.</p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"195 ","pages":"Article 104115"},"PeriodicalIF":14.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0890695524000014/pdfft?md5=dd9256c576123937ff50a3e9ad33c13a&pid=1-s2.0-S0890695524000014-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139081995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In-situ synthesis of spatial heterostructure Ti composites by laser powder bed fusion to overcome the strength and plasticity trade-off 利用激光粉末床熔融技术原位合成空间异质结构钛复合材料,以克服强度和塑性之间的权衡问题
IF 14 1区 工程技术
International Journal of Machine Tools & Manufacture Pub Date : 2024-01-29 DOI: 10.1016/j.ijmachtools.2024.104117
Yunmian Xiao, Yongqiang Yang, Di Wang, Hanxiang Zhou, Zibin Liu, Linqing Liu, Shibiao Wu, Changhui Song
{"title":"In-situ synthesis of spatial heterostructure Ti composites by laser powder bed fusion to overcome the strength and plasticity trade-off","authors":"Yunmian Xiao,&nbsp;Yongqiang Yang,&nbsp;Di Wang,&nbsp;Hanxiang Zhou,&nbsp;Zibin Liu,&nbsp;Linqing Liu,&nbsp;Shibiao Wu,&nbsp;Changhui Song","doi":"10.1016/j.ijmachtools.2024.104117","DOIUrl":"10.1016/j.ijmachtools.2024.104117","url":null,"abstract":"<div><p><span><span><span>Recent research has focused on laser in-situ additive manufacturing of </span>metal matrix composites<span> with spatially controllable microstructures (phases). This study, inspired by the process of inserting mesh fibers into reinforced concrete, synthesizes TiN in situ using laser </span></span>powder bed fusion and N</span><sub>2</sub><span> gas. The laser-melted track, embedded with TiN particles, formed a spatially heterostructured Ti composite (SHTC) with a three-dimensional, artificially controlled architecture in a pure Ti matrix. The influences of process parameters on the mechanical properties of the spatially heterostructured Ti composite and the microstructural evolution of TiN/Ti were investigated emphatically. The results showed that the growth direction of the microstructure was changed by laser powder bed fusion additive manufacturing with alternating N</span><sub>2</sub>–Ar gas under suitable N<sub>2</sub><span> concentration and melting track spacing. Among all spatially heterostructured Ti composites, the TiN–Ti heterolayer net-like structure achieved a high ultimate tensile strength<span><span> of ∼1.0 GPa and elongation of 27 %, demonstrating a superior strength-ductility combination than intrinsic pure Ti and uniform TiN composites, as well as traditional layered structure Ti-based composites. During the tensile test, the </span>deformation behavior<span><span> was monitored in situ using digital image correlation<span>, and the fracture mechanism was investigated. Hetero-deformation induced strengthening and toughening potentially explains the mechanism behind the strength enhancement of spatially heterostructured Ti composites. Furthermore, this work may stimulate research and development in additive manufacturing of spatial </span></span>heterostructures with configurable structures, targeting synergistic regulation of strength and ductility in the integration of structure-material-function.</span></span></span></p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"196 ","pages":"Article 104117"},"PeriodicalIF":14.0,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139573951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atomic-scale smoothing of semiconducting oxides via plasma-enabled atomic-scale reconstruction 通过等离子体原子尺度重构实现半导体氧化物的原子尺度平滑化
IF 14 1区 工程技术
International Journal of Machine Tools & Manufacture Pub Date : 2024-01-07 DOI: 10.1016/j.ijmachtools.2024.104119
Yongjie Zhang , Jin Tang , Shaoxiang Liang , Junlei Zhao , Mengyuan Hua , Chun Zhang , Hui Deng
{"title":"Atomic-scale smoothing of semiconducting oxides via plasma-enabled atomic-scale reconstruction","authors":"Yongjie Zhang ,&nbsp;Jin Tang ,&nbsp;Shaoxiang Liang ,&nbsp;Junlei Zhao ,&nbsp;Mengyuan Hua ,&nbsp;Chun Zhang ,&nbsp;Hui Deng","doi":"10.1016/j.ijmachtools.2024.104119","DOIUrl":"10.1016/j.ijmachtools.2024.104119","url":null,"abstract":"<div><p><em>β</em>-Ga<sub>2</sub>O<sub>3</sub>, known as a next-generation wide-bandgap transparent semiconducting oxide (TSO), has considerable application potential in ultra-high-power and high-temperature devices. However, fabricating a smooth <em>β</em>-Ga<sub>2</sub>O<sub>3</sub> substrate is challenging owing to its strong mechanical strength and chemical stability. In this study, an atomic-scale smoothing method named plasma-enabled atomic-scale reconstruction (PEAR) is proposed. We find that three reconstruction modes, namely, 2D-island, step-flow, and step-bunching, can be identified with the increase in the input power; only the step-flow mode can result in the formation of an atomically smooth <em>β</em>-Ga<sub>2</sub>O<sub>3</sub> surface (<em>S</em>a = 0.098 nm). Various surface and subsurface characterizations indicate that the smooth <em>β</em>-Ga<sub>2</sub>O<sub>3</sub><span> surface shows excellent surface integrity, high crystalline quality<span>, and remarkable photoelectric properties. The atomic-scale density functional theory-based calculations show that the diffusion energy barrier of a Ga atom is only 0.46 eV, thereby supporting the atomic mass migration induced by high-energy plasma irradiation in the experiment. Nanoscale molecular dynamics simulations reveal that O atoms firstly migrate to crystallization sites, followed by Ga atoms with a lower migration rate; reconstruction mainly proceeds along the &lt;010&gt; direction and then expands along the &lt;100&gt; and &lt;001&gt; directions. The millimeter-scale numerical simulations based on the finite element method demonstrate that the coupling of the thermal and flow fields of plasma is the impetus for PEAR of </span></span><em>β</em>-Ga<sub>2</sub>O<sub>3</sub>. Furthermore, the smoothing generality of PEAR is demonstrated by extending it to other common TSOs (<em>α</em>-Al<sub>2</sub>O<sub>3</sub>, ZnO, and MgO). As a typical plasma-based atomic-scale smoothing method, PEAR is expected to enrich the theoretical and technological knowledge on atomic-scale manufacturing.</p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"196 ","pages":"Article 104119"},"PeriodicalIF":14.0,"publicationDate":"2024-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139112253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of parallel kinematic machine tools: Design, modeling, and applications 并联运动机床综述:设计、建模和应用
IF 14 1区 工程技术
International Journal of Machine Tools & Manufacture Pub Date : 2024-01-07 DOI: 10.1016/j.ijmachtools.2024.104118
Matteo Russo , Dan Zhang , Xin-Jun Liu , Zenghui Xie
{"title":"A review of parallel kinematic machine tools: Design, modeling, and applications","authors":"Matteo Russo ,&nbsp;Dan Zhang ,&nbsp;Xin-Jun Liu ,&nbsp;Zenghui Xie","doi":"10.1016/j.ijmachtools.2024.104118","DOIUrl":"https://doi.org/10.1016/j.ijmachtools.2024.104118","url":null,"abstract":"<div><p>Parallel manipulators are generally associated with high speed, stiffness, and repeatability. Nonetheless, after decades of development, their industrial uptake is still limited when compared to serial architectures. In this paper, we investigate the reasons behind this gap between parallel machine tool potential and real-case applications with a critical analysis of the state of the art. This paper aims to provide machine tool users with the understanding of the functional and technological characteristics of parallel manipulators, as well as to help roboticists approach machining applications with an in-depth perspective and a curated collection of references. We outline fundamental modeling tools for parallel mechanisms and then explain how they can be applied to the development, optimization, and performance evaluation of machine tools, with a focus on kinematic and dynamic metrics, error analysis, and calibration. We then discuss the evolution of parallel machine tools in industry, highlighting successful designs and commercial applications. Finally, we provide our perspective of the field, summarizing the main characteristics, advantages, and disadvantages of parallel machine tools, highlighting the barriers preventing a more widespread implementation of these systems, outlining current research trends, and identifying potential future developments.</p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"196 ","pages":"Article 104118"},"PeriodicalIF":14.0,"publicationDate":"2024-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S089069552400004X/pdfft?md5=c270b839557f557976e253916f5b43a8&pid=1-s2.0-S089069552400004X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139406383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial – Special issue “Manufacturing technologies for metamaterials” 编辑--"超材料制造技术 "特刊
IF 14 1区 工程技术
International Journal of Machine Tools & Manufacture Pub Date : 2024-01-03 DOI: 10.1016/j.ijmachtools.2024.104116
A.T. Clare, K. Zhou
{"title":"Editorial – Special issue “Manufacturing technologies for metamaterials”","authors":"A.T. Clare,&nbsp;K. Zhou","doi":"10.1016/j.ijmachtools.2024.104116","DOIUrl":"10.1016/j.ijmachtools.2024.104116","url":null,"abstract":"","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"195 ","pages":"Article 104116"},"PeriodicalIF":14.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0890695524000026/pdfft?md5=1fe0184effadd31f0da12e92d6bbd444&pid=1-s2.0-S0890695524000026-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139091723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual-droplet transition control for improving forming quality and composition homogenizing in dual-wire additive manufacturing of Ti2AlNb alloy 改善 Ti2AlNb 合金双线快速成型制造中成型质量和成分均匀化的双液滴过渡控制
IF 14 1区 工程技术
International Journal of Machine Tools & Manufacture Pub Date : 2023-12-30 DOI: 10.1016/j.ijmachtools.2023.104114
Zixiang Li , Baohua Chang , jiachen Wang , Haoyu Zhang , Zhiyue Liang , Zhenyu Liao , Li Wang , Changmeng Liu , Dong Du
{"title":"Dual-droplet transition control for improving forming quality and composition homogenizing in dual-wire additive manufacturing of Ti2AlNb alloy","authors":"Zixiang Li ,&nbsp;Baohua Chang ,&nbsp;jiachen Wang ,&nbsp;Haoyu Zhang ,&nbsp;Zhiyue Liang ,&nbsp;Zhenyu Liao ,&nbsp;Li Wang ,&nbsp;Changmeng Liu ,&nbsp;Dong Du","doi":"10.1016/j.ijmachtools.2023.104114","DOIUrl":"10.1016/j.ijmachtools.2023.104114","url":null,"abstract":"<div><p><span><span>Dual-wire additive manufacturing (AM) couples traditional wire-based AM for part fabrication and the molten pool metallurgy for material-preparation with high deposition efficiency and material utilization. However, compared with traditional single-wire </span>AM technology, it has a more complex and sensitive dual-droplet transition distance (TD), which not only affects the forming quality but also the metallurgical quality. Therefore, it is necessary and urgent to monitor and control its TD value online. In this study, we systematically investigated the sensing, controlling, and influential mechanism of the TD value in dual-wire AM technology, and Ti</span><sub>2</sub><span>AlNb was taken as the target alloy owing to its great application prospects in the aerospace field. Specifically, a deposition experiment with different initial TD value was conducted to study the effect on the morphology and composition distribution of the as-printed part. Based on the optimal distance, the related image extraction algorithms and closed-loop control methods are developed. The closed-loop controlled verification experiment on the slope and step substrate, as well as the multi-layer deposition test, were carried out and analyzed. The results indicate that the developed system can control the TD to the desired value with good robustness. In addition, the controlled deposited multi-layer part exhibited good morphology and composition homogenizing in the post-characterization experiment. This study is of great significance for the intelligent and industrial development of dual-wire AM technology.</span></p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"195 ","pages":"Article 104114"},"PeriodicalIF":14.0,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139060708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gradient process parameter optimization in additive friction stir deposition of aluminum alloys 铝合金添加剂搅拌摩擦沉积中的梯度工艺参数优化
IF 14 1区 工程技术
International Journal of Machine Tools & Manufacture Pub Date : 2023-12-28 DOI: 10.1016/j.ijmachtools.2023.104113
Yuqi Jin , Tianhao Wang , Tingkun Liu , Teng Yang , Shelden Dowden , Arup Neogi , Narendra B. Dahotre
{"title":"Gradient process parameter optimization in additive friction stir deposition of aluminum alloys","authors":"Yuqi Jin ,&nbsp;Tianhao Wang ,&nbsp;Tingkun Liu ,&nbsp;Teng Yang ,&nbsp;Shelden Dowden ,&nbsp;Arup Neogi ,&nbsp;Narendra B. Dahotre","doi":"10.1016/j.ijmachtools.2023.104113","DOIUrl":"10.1016/j.ijmachtools.2023.104113","url":null,"abstract":"<div><p><span>As one of the most novel additive manufacturing<span> methods, currently selection and optimization of processing parameters in additive friction stir deposition (AFSD) have mainly relied on experiments and subsequent characterization of microstructural and mechanical properties. Such approaches are both time- and resource-consuming. Therefore, an ultrasound elastography enhanced gradient process parameter optimization method was applied in the present work to obtain a window of optimized processing parameters for AFSD processing of aluminum alloy by varying both rotational and linear deposition speeds. The quality of AFSD processed layer was investigated for physical nature of surface, dynamic </span></span>elastic modulus<span>, and microstructural aspects in cross-sections of the deposited layer. The efficiency in exploring process parameters was significantly enhanced by implementing a high-throughput screening experimental design based on application of gradient process parameters and continuous ultrasound elastographs. In addition, the applied ultrasonic elastography technique assisted in evaluating the homogeneity in microstructure and mechanical properties of AFSD sample over the entire gradients of the process parameters. The techniques adopted in current work can be further extended to identify suitable parameters for AFSD fabrication of components with desired mechanical properties such as hardness, fatigue, etc.</span></p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"195 ","pages":"Article 104113"},"PeriodicalIF":14.0,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139059642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Breaking through the bending limit of Al-alloy tubes by cryogenic effect controlled mechanical properties and friction behaviours 通过低温效应控制力学性能和摩擦行为,突破铝合金管的弯曲极限
IF 14 1区 工程技术
International Journal of Machine Tools & Manufacture Pub Date : 2023-12-26 DOI: 10.1016/j.ijmachtools.2023.104111
Hong Sun , Heng Li , Heng Yang , Jun Ma , Xuancheng Hao , M.W. Fu
{"title":"Breaking through the bending limit of Al-alloy tubes by cryogenic effect controlled mechanical properties and friction behaviours","authors":"Hong Sun ,&nbsp;Heng Li ,&nbsp;Heng Yang ,&nbsp;Jun Ma ,&nbsp;Xuancheng Hao ,&nbsp;M.W. Fu","doi":"10.1016/j.ijmachtools.2023.104111","DOIUrl":"10.1016/j.ijmachtools.2023.104111","url":null,"abstract":"<div><p><span><span><span>Aluminium alloy (Al-alloy) tubes, especially large-diameter thin-walled tubes with a tough </span>bending radius, have been widely utilised in different industrial clusters owing to their high strength-to-weight ratio and </span>good corrosion resistance<span><span>. However, achieving such extreme specifications is challenging because severe and nonuniform bending deformation may cause tension and compression instabilities, such as overthinning, cracking, and wrinkling. Considering possible improvements in mechanical properties and friction behaviours of Al-alloy at </span>cryogenic temperature (CT), the cryogenic bending potential of the 6061-O tubes with an extreme ratio of </span></span><em>D</em>/<em>t</em><span> of 89 (diameter/wall thickness) was explored at different deformation temperatures<span><span><span>, including room temperature (RT) 20 °C, −60 °C, −120 °C, and −180 °C. First, the cryogenic mechanical properties and friction behaviour of the tubes were characterised. It was found that the overall mechanical properties of the Al-alloy tube were improved because of sub-grain formation and a more uniform distribution of dislocations at CT. The coefficient of friction between the tube and tooling exhibited a varying degree of reduction owing to the sensitivity of the tubes and the lubricant to CT. Subsequently, an innovative experimental platform for cryogenic bending was designed, and a </span>finite element model of cryogenic bending was established. Third, cryogenic tube </span>bendability and mechanism were explored. It was found that 6061-O tube formability can be effectively improved by cryogenic bending; however, there is no monotonic relationship between the bendability improvement and temperature decrease. The temperature to obtain the best bendability is −60 °C, at which the average wrinkle height is decreased by 81.4 %, and the average wall thickness reduction rate is reduced by 23.8 %. The bending limit represented by the bending radius is reduced from a 3.0</span></span><em>D</em> bending radius at RT to 1.0<em>D</em><span> at −60 °C, which is realised by the different or even opposite effects of the mechanical properties of tubes and the friction coefficient between the multiple contact interfaces on wall thinning and wrinkling.</span></p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"195 ","pages":"Article 104111"},"PeriodicalIF":14.0,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139041620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly controllable additive manufacturing of heterostructured nickel-based composites 高度可控的异质结构镍基复合材料添加制造技术
IF 14 1区 工程技术
International Journal of Machine Tools & Manufacture Pub Date : 2023-12-23 DOI: 10.1016/j.ijmachtools.2023.104112
Yu Kong , Kaiyuan Peng , Haihong Huang
{"title":"Highly controllable additive manufacturing of heterostructured nickel-based composites","authors":"Yu Kong ,&nbsp;Kaiyuan Peng ,&nbsp;Haihong Huang","doi":"10.1016/j.ijmachtools.2023.104112","DOIUrl":"10.1016/j.ijmachtools.2023.104112","url":null,"abstract":"<div><p>Owing to hetero-deformation induced (HDI) strengthening and HDI work hardening, heterostructured materials with both “hard” and “soft” features have been proven to achieve strength–ductility synergy. Laser-directed energy deposition (LDED) has shown tremendous potential in the fabrication of heterostructured materials, but faces challenges in accurately placing the required structures or materials at specific times and locations. This study developed a novel Ti<sub>2</sub><span>AlC (MAX phase)-modified Inconel<span> 718 composite material (MAX/Inconel 718) with multiscale precipitation (γ’, carbides, Laves phase) characteristics during solidification, highly sensitive to changes in cooling rates, and exhibiting excellent controllability of strength. A method called multibeam diameter laser-directed energy deposition (MBD-LDED), which allows the dynamic adjustment of the beam diameter during the building process to alter the cooling rate during solidification, is proposed. This enabled the placement of MAX/Inconel 718 with different strengths at suitable positions within the part. Different combinations of beam diameters can form periodic distributions and spatial interlocking structures with alternating “soft” and “hard” features perpendicular and parallel to the building direction. Compared to commercial Inconel 718, MAX/Inconel 718 demonstrated excellent manufacturability, strength, and high-temperature oxidation resistance. This study provides new insights into the design and performance optimisation of heterostructures using homogeneous materials and offers guidance for the integrated manufacturing of heterostructured components in the context of comprehensive material–structure–performance design.</span></span></p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"195 ","pages":"Article 104112"},"PeriodicalIF":14.0,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138943502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Achieving superelastic shape recoverability in smart flexible CuAlMn metamaterials via 3D printing 通过 3D 打印实现智能柔性铜铝锰超材料的超弹性形状恢复能力
IF 14 1区 工程技术
International Journal of Machine Tools & Manufacture Pub Date : 2023-12-18 DOI: 10.1016/j.ijmachtools.2023.104110
Dan Zheng , Ruidi Li , Jingtao Kang , Mengjie Luo , Tiechui Yuan , Changjun Han
{"title":"Achieving superelastic shape recoverability in smart flexible CuAlMn metamaterials via 3D printing","authors":"Dan Zheng ,&nbsp;Ruidi Li ,&nbsp;Jingtao Kang ,&nbsp;Mengjie Luo ,&nbsp;Tiechui Yuan ,&nbsp;Changjun Han","doi":"10.1016/j.ijmachtools.2023.104110","DOIUrl":"10.1016/j.ijmachtools.2023.104110","url":null,"abstract":"<div><p><span><span><span>Despite the remarkable advancements in the additive manufacturing<span> of metamaterials, tradeoffs remain between functionality and mechanical performance owning to static configuration, which limits their application, particularly in areas that require efficient </span></span>multifunctionality. In this paper, we present a novel approach for fabricating multifunctional smart flexible metal metamaterials using laser </span>powder bed fusion<span><span> technology. This approach enables the reversible recovery superelastic strain exceeding 20 % with a 100 % recovery rate—ten times higher than that observed in the printed alloy. This is achieved by utilising an innovative metamaterial structural design and a novel shape memory alloy powder. To achieve the aforementioned purpose, the metamaterial unit cells were initially designed to ensure flexible deformation ability with a </span>Poisson's ratio<span> of zero. Then, we prepared a novel shape memory alloy composition of Cu-18at%Al-l0at%Mn-0.3 at%Si, which exhibited excellent printability and adaptability within the laser powder bed fusion additive manufacturing process. Additionally</span></span></span><strong>,</strong><span><span> the printed SMA exhibited superelasticity, one-way and two-way shape memory effect under varying parameters. Furthermore, the combination of multifunctionality into the flexible CuAlMn metamaterials was achieved by manipulating process parameters. Remarkably, the printed metamaterial demonstrates exceptional flexibility deformation, and presents superelasticity or shape memory effect, ensuring the recovery of its original shape after experiencing deformation. This work not only demonstrates the vast potential of utilising </span>additive manufacturing technology for fabricating functional and adaptable metal metamaterials but also presents an innovative approach for creating smart metal metamaterial.</span></p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"195 ","pages":"Article 104110"},"PeriodicalIF":14.0,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138770241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信