Yintian Xing , Yue Liu , Tengfei Yin , Denghui Li , Zhanwen Sun , Changxi Xue , Wai Sze Yip , Suet To
{"title":"Magnetic and ultrasonic vibration dual-field assisted ultra-precision diamond cutting of high-entropy alloys","authors":"Yintian Xing , Yue Liu , Tengfei Yin , Denghui Li , Zhanwen Sun , Changxi Xue , Wai Sze Yip , Suet To","doi":"10.1016/j.ijmachtools.2024.104208","DOIUrl":null,"url":null,"abstract":"<div><p>Despite the remarkable achievements in single-energy field-assisted diamond cutting technology, its performance remains unsatisfactory for processing high-entropy alloys (HEAs), targeted for next-generation large-scale industrial applications due to their exceptional properties. The challenge lies in overcoming the limitations of current single-energy field-assisted processing to achieve ultra-precision manufacturing of these advanced materials. This study proposes a multi-energy field-assisted ultra-precision machining technology, the magnetic and ultrasonic vibration dual-field assisted diamond cutting (MUVFDC), to address the current challenges. The phenomenological aspects of the dual-field coupling effect on HEAs are explored and investigated through comprehensive characterization of the workpiece material, ranging from macroscopic surface morphology to microscopic structural features. These analyses are performed based on experimental results from four different processing technologies: non-energy field, magnetic field, ultrasonic vibration field, and dual-field assisted machining. Research results demonstrate that MUVFDC technology effectively combines the advantages of a vibration field, which enhances cutting stability, and a magnetic field, which improves the machinability of materials. Additionally, this coupling technology addresses the challenges associated with single-energy field machining: it mitigates the difficulty of controlling surface scratches caused by tiny hard particles in a vibration field and suppresses the rapid tool wear encountered in a magnetic field. Furthermore, the gradient evolution of the subsurface microstructure reveals that the vibration field suppresses the severe matrix deformation induced by magnetic excitation. Simultaneously, the magnetic field reduces the size inhomogeneity of recrystallized grains caused by intermittent cutting. Overall, MUVFDC technology enhances surface quality, suppresses tool wear, smooths chip morphology, and reduces subsurface damage compared to single-energy field or non-energy-assisted machining. This work breaks through the performance limitations of traditional single-energy field-assisted processing and advances the understanding of the dual-field coupling effects in HEAs machining. It also presents a promising processing technology for the future ultra-precision manufacturing of advanced materials.</p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"202 ","pages":"Article 104208"},"PeriodicalIF":14.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Tools & Manufacture","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890695524000944","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the remarkable achievements in single-energy field-assisted diamond cutting technology, its performance remains unsatisfactory for processing high-entropy alloys (HEAs), targeted for next-generation large-scale industrial applications due to their exceptional properties. The challenge lies in overcoming the limitations of current single-energy field-assisted processing to achieve ultra-precision manufacturing of these advanced materials. This study proposes a multi-energy field-assisted ultra-precision machining technology, the magnetic and ultrasonic vibration dual-field assisted diamond cutting (MUVFDC), to address the current challenges. The phenomenological aspects of the dual-field coupling effect on HEAs are explored and investigated through comprehensive characterization of the workpiece material, ranging from macroscopic surface morphology to microscopic structural features. These analyses are performed based on experimental results from four different processing technologies: non-energy field, magnetic field, ultrasonic vibration field, and dual-field assisted machining. Research results demonstrate that MUVFDC technology effectively combines the advantages of a vibration field, which enhances cutting stability, and a magnetic field, which improves the machinability of materials. Additionally, this coupling technology addresses the challenges associated with single-energy field machining: it mitigates the difficulty of controlling surface scratches caused by tiny hard particles in a vibration field and suppresses the rapid tool wear encountered in a magnetic field. Furthermore, the gradient evolution of the subsurface microstructure reveals that the vibration field suppresses the severe matrix deformation induced by magnetic excitation. Simultaneously, the magnetic field reduces the size inhomogeneity of recrystallized grains caused by intermittent cutting. Overall, MUVFDC technology enhances surface quality, suppresses tool wear, smooths chip morphology, and reduces subsurface damage compared to single-energy field or non-energy-assisted machining. This work breaks through the performance limitations of traditional single-energy field-assisted processing and advances the understanding of the dual-field coupling effects in HEAs machining. It also presents a promising processing technology for the future ultra-precision manufacturing of advanced materials.
期刊介绍:
The International Journal of Machine Tools and Manufacture is dedicated to advancing scientific comprehension of the fundamental mechanics involved in processes and machines utilized in the manufacturing of engineering components. While the primary focus is on metals, the journal also explores applications in composites, ceramics, and other structural or functional materials. The coverage includes a diverse range of topics:
- Essential mechanics of processes involving material removal, accretion, and deformation, encompassing solid, semi-solid, or particulate forms.
- Significant scientific advancements in existing or new processes and machines.
- In-depth characterization of workpiece materials (structure/surfaces) through advanced techniques (e.g., SEM, EDS, TEM, EBSD, AES, Raman spectroscopy) to unveil new phenomenological aspects governing manufacturing processes.
- Tool design, utilization, and comprehensive studies of failure mechanisms.
- Innovative concepts of machine tools, fixtures, and tool holders supported by modeling and demonstrations relevant to manufacturing processes within the journal's scope.
- Novel scientific contributions exploring interactions between the machine tool, control system, software design, and processes.
- Studies elucidating specific mechanisms governing niche processes (e.g., ultra-high precision, nano/atomic level manufacturing with either mechanical or non-mechanical "tools").
- Innovative approaches, underpinned by thorough scientific analysis, addressing emerging or breakthrough processes (e.g., bio-inspired manufacturing) and/or applications (e.g., ultra-high precision optics).