InsightPub Date : 2023-12-30DOI: 10.1002/inst.12469
Eric Razafimahazo, Pierre de Saqui-Sannes, Rob Vingerhoeds, Julien Soula, Romain Mège
{"title":"Model-Based Systems Engineering Approach for an Indoor Multi-Usages System Development","authors":"Eric Razafimahazo, Pierre de Saqui-Sannes, Rob Vingerhoeds, Julien Soula, Romain Mège","doi":"10.1002/inst.12469","DOIUrl":"https://doi.org/10.1002/inst.12469","url":null,"abstract":"<div>\u0000 \u0000 <p>This paper discusses the design of multi-usage systems able to perform various missions inside buildings, including inspection, digitization, monitoring of construction work, and evaluation of technical performances of the building. Designing such systems, carrying out various missions in different operational environments, is a complex task and requires adopting a well-defined engineering approach. A model-based systems engineering (MBSE) approach is proposed and applied to address the complexity of the indoor multi-usages system and to lead its development. The proposed method provides several complementary and comprehensive views of the system.</p>\u0000 </div>","PeriodicalId":13956,"journal":{"name":"Insight","volume":"26 4","pages":"38-41"},"PeriodicalIF":1.0,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143253613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
InsightPub Date : 2023-12-30DOI: 10.1002/inst.12463
Léa Kozak, Eric Bonjour, Frédérique Mayer, Jean-Pierre Micaëlli
{"title":"Challenges in Developing a Method to Support the Adoption of a Model-Based Systems Engineering Methodology","authors":"Léa Kozak, Eric Bonjour, Frédérique Mayer, Jean-Pierre Micaëlli","doi":"10.1002/inst.12463","DOIUrl":"https://doi.org/10.1002/inst.12463","url":null,"abstract":"<div>\u0000 \u0000 <p>To improve design performance and achieve sustainability, organisations are looking to change their systems engineering practices. A model-based systems engineering (MBSE) methodology provides a framework for integrating, associating, orchestrating, and connecting executable and interactive models. It improves early verification and validation of system specifications and architectures, as well as communication and collaboration between project stakeholders. In this sense, MBSE has a truly systemic aspect. The variables to be considered when designing a support strategy are numerous and multidimensional. As a result, this situation can lead to contradictions in the choice of actions to be implemented, or to paradoxes that are likely to slow down the progress of the deployment project with the engineers. Currently, there is no method to support teams in charge of a methodological transformation (for example, in MBSE) to facilitate the adoption of this methodology. This article identifies the main challenges involved in developing such a methodology.</p>\u0000 </div>","PeriodicalId":13956,"journal":{"name":"Insight","volume":"26 4","pages":"15-17"},"PeriodicalIF":1.0,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143253827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Early Validation of Functional Requirements","authors":"Yasmine Assioua, Rabea Ameur-Boulifa, Renaud Pacalet, Patricia Guitton-Ouhamou","doi":"10.1002/inst.12467","DOIUrl":"https://doi.org/10.1002/inst.12467","url":null,"abstract":"<div>\u0000 \u0000 <p>Technical specifications and intended functionalities are often gathered in documents that include requirements written in constrained natural language, that is, natural-like language with restricted syntax. In the automotive industry one challenge is the ability to produce safe vehicles, emphasizing the importance of safety by design. In the framework of case studies based on functions of autonomous vehicles, we introduce a systematic process for building formal models from automotive requirements written in constrained natural language, and for verifying them. By allowing formal verification at the earliest stages of the development cycle our aim is to avoid the costly discovery of errors at later stages.</p>\u0000 </div>","PeriodicalId":13956,"journal":{"name":"Insight","volume":"26 4","pages":"30-32"},"PeriodicalIF":1.0,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143253599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
InsightPub Date : 2023-12-30DOI: 10.1002/inst.12464
Laetitia Bornes, Catherine Letondal, Rob Vingerhoeds
{"title":"Understanding the Indirect Effects of Interactive Systems Within Systems of Systems","authors":"Laetitia Bornes, Catherine Letondal, Rob Vingerhoeds","doi":"10.1002/inst.12464","DOIUrl":"https://doi.org/10.1002/inst.12464","url":null,"abstract":"<div>\u0000 \u0000 <p>Until recently, research into the sustainable design of interactive systems has primarily focused on the direct material impact of a system, through improving its energy efficiency and optimizing its lifecycle. Yet the way a system is designed and marketed often has wider repercussions, such as rebound effects, and systemic change in practices. These effects are harder to assess (and to anticipate) than the direct physical impact of the construction and use of the system itself. Current tools are unable to account for the complexity of these effects: the underlying causal mechanisms, their multi-level nature, their different temporalities, and the variety of their consequences (environmental and societal). This is why we are seeking to develop a specific methodology and tool, inspired by systemic design and system dynamics. These are intended for decision-makers and designers of interactive systems within systems of systems (for example, in the fields of agricultural robotics or public transportation). In this paper, we present this modeling approach and our prototype tool through the example of a second-hand clothing sales platform.</p>\u0000 </div>","PeriodicalId":13956,"journal":{"name":"Insight","volume":"26 4","pages":"18-21"},"PeriodicalIF":1.0,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143253828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
InsightPub Date : 2023-10-01DOI: 10.1784/insi.2023.65.10.541
M Blankschän, D Kanzler, R Liebich
{"title":"Approaches to assess reliability in visual inspection","authors":"M Blankschän, D Kanzler, R Liebich","doi":"10.1784/insi.2023.65.10.541","DOIUrl":"https://doi.org/10.1784/insi.2023.65.10.541","url":null,"abstract":"Non-destructive testing (NDT) plays an important role in quality assurance and ensuring reliable ongoing operations in many industries. Thus, the importance of reliability assessment of inspection results is increasing. Current standards and regulations provide several approaches for this purpose. For example, DIN EN ISO/IEC 17025:2018-03 provides general requirements to determine measurement uncertainty. In contrast, method-related standards such as DIN ISO 19828:2021-03 specify detailed requirements for visual inspection (VT), considering environmental conditions and other factors (for example experience of the inspection personnel). In contrast, VDA Volume 5 defines visual inspection as an attributive method, making measurement uncertainty determinations unnecessary. Instead, the reliability of the inspection process is evaluated by proficiency tests. This paper examines approaches of regulations, based on previous experiments, for their applicability and suitability for considering the reliability of visual inspections. It is shown that individual measurement values (for example illuminance) are not suitable for this purpose. Furthermore, it is shown that human factors (HFs) (for example training or experience of the inspector), considered in isolation, are also not sufficiently suitable. Hence, the combination of the qualification of inspection methods, by means of proficiency tests on reference objects, and the application of Cohen's kappa for evaluating human factors appeared to be more suitable for the investigated issue.","PeriodicalId":13956,"journal":{"name":"Insight","volume":"54 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135707285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
InsightPub Date : 2023-10-01DOI: 10.1784/insi.2023.65.10.559
Zhiwu Shang, Hu Liu, Baoren Zhang, Zehua Feng, Wanxiang Li
{"title":"Multi-view feature fusion fault diagnosis method based on an improved temporal convolutional network","authors":"Zhiwu Shang, Hu Liu, Baoren Zhang, Zehua Feng, Wanxiang Li","doi":"10.1784/insi.2023.65.10.559","DOIUrl":"https://doi.org/10.1784/insi.2023.65.10.559","url":null,"abstract":"This paper addresses the problem of fault identification in rotating machinery by analysing vibration data using a neural network approach. Temporal convolutional networks (TCNs) have attracted a lot of focus in the domain of fault identification; however, TCN convolution kernels are small and susceptible to high-frequency noise interference. Furthermore, the default weight coefficient of the internal residual connection is 1. When there are few residual blocks, the residual block characteristic extraction ability is suppressed and only the vibration signal collected at a single location is utilised for fault diagnosis as it contains incomprehensive fault information. To tackle the above issues, this paper proposes a multi-view feature fusion fault diagnosis algorithm with an adaptive residual coefficient assignment TCN with wide first-layer kernels (WD-ARCATCN). Firstly, a WD-ARCATCN feature extraction network is designed to extract deep state features from different views and the first layer of the TCN is set as a wide-kernel (WD) convolutional layer to suppress high-frequency noise. An adaptive residual coefficient assignment (ARCA) unit is designed in the residual connection to increase the characteristic learning capability of the residual blocks and the residual blocks with ARCA units are stacked to further extract multi-view deep fault features. In this paper, acceleration signals collected at different positions are used as the multi-view feature source for the first time and the fault information contained is more comprehensive. Then, based on a self-attention mechanism, the multi-view feature fusion method is improved and the view weights are adaptively assigned to effectively fuse different view characteristics and enhance the identification of the fault characteristics. Finally, the mapping between the multi-view fusion features and the labels is achieved using a softmax classifier. The algorithm has been tested using experimental data from the bearing vibration database at Case Western Reserve University (CWRU) and it performed much better compared to other diagnostic algorithms.","PeriodicalId":13956,"journal":{"name":"Insight","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135708229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
InsightPub Date : 2023-10-01DOI: 10.1784/insi.2023.65.10.545
K Mohamed Bak, K Kalaichelvan, M Abdur Rahman, S Haque, S Shaul Hameed, A S Selvakumar
{"title":"Analysis of acoustic emission testing on the adherent layer thickness of lap joints under tensile loading","authors":"K Mohamed Bak, K Kalaichelvan, M Abdur Rahman, S Haque, S Shaul Hameed, A S Selvakumar","doi":"10.1784/insi.2023.65.10.545","DOIUrl":"https://doi.org/10.1784/insi.2023.65.10.545","url":null,"abstract":"This paper aims to investigate the bonding strength of lap joints under tensile loading by altering the thickness of the adherent layer. The results show that increasing the adherent layer thickness of the bonded lap joint reduced stress concentration, indicating a higher stress transmission between the overlapping regions. Acoustic emission (AE) signals were used to identify the different failure modes and their frequency ranges by subjecting the AE signals to parametric analysis, fast Fourier transform (FFT) analysis, continuous wavelet transform (CWT) analysis and discrete wavelet transform (DWT) analysis. FFT analysis identified the frequency ranges of adhesive failure, fibre tear failure and mixed failure. At the same time, DWT was more effective at identifying the frequency ranges of the failure modes associated with varying adherent layer thicknesses in lap joints. Adhesive failure was characterised by low amplitudes, low frequency ranges and low energy levels. In contrast, delamination displayed moderate amplitudes, moderate frequency ranges and medium energy levels. High amplitudes, high frequency ranges, high energy levels and strong signal strength indicated mixed failures.","PeriodicalId":13956,"journal":{"name":"Insight","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135708175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
InsightPub Date : 2023-10-01DOI: 10.1784/insi.2023.65.10.551
Xianghong Wang, Zezhong He, Jun Liu, Xiaoqiang Xu, Hongwei Hu
{"title":"Binocular vision vibration measurement based on pixel coordinate matching of inner corner points in a chequerboard","authors":"Xianghong Wang, Zezhong He, Jun Liu, Xiaoqiang Xu, Hongwei Hu","doi":"10.1784/insi.2023.65.10.551","DOIUrl":"https://doi.org/10.1784/insi.2023.65.10.551","url":null,"abstract":"A binocular vision measurement system provides a simple method for obtaining three-dimensional vibration data from moving objects, which is suitable for vibration monitoring of large structures such as bridges. Aiming to address the problem that the feature selection process for binocular visual inspection affects the measurement accuracy, chequerboard feature points are selected in this paper for carrying out a visual displacement measurement method. Firstly, pixel coordinate matching of the inner corner points in the chequerboard is completed and then a binocular vision measurement system is established. The measurement results are compared with using circular feature points. Secondly, the binocular vision measurement model is applied to the vibration measurement of a cantilever beam. Using comparisons with a three-axis acceleration sensor, the effectiveness and accuracy of this method are evaluated. Finally, the method is applied to measure the vibration of the cantilever beam under different load conditions and its vibration characteristics are analysed. The results show that the accuracy of the binocular vision measurement method based on pixel coordinate matching of the inner corner points in the chequerboard is higher than that using circular feature points. From comparisons with the acceleration sensor, the measurement error of this method is found to be small. In addition, the method can effectively analyse the vibration performance of a cantilever beam under different load conditions. Therefore, this measurement method is effective and provides a theoretical basis for the identification of vibration characteristics in large engineering structures.","PeriodicalId":13956,"journal":{"name":"Insight","volume":"49 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135708226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
InsightPub Date : 2023-10-01DOI: 10.1784/insi.2023.65.10.570
J Susai Mary, M A Sai Balaji, D Dinakaran
{"title":"Hybrid adaptive control of CNC drilling for enhancement of tool life and surface quality","authors":"J Susai Mary, M A Sai Balaji, D Dinakaran","doi":"10.1784/insi.2023.65.10.570","DOIUrl":"https://doi.org/10.1784/insi.2023.65.10.570","url":null,"abstract":"Intelligent machining requires the online adaptation of the machining parameters to improve tool life and product quality and to reduce machining costs. This article presents a novel hybrid adaptive control (HAC) system for a drilling process. The HAC system is a combination of two adaptive controls: geometric adaptive control (GAC) and adaptive control by optimisation (ACO). It keeps the roughness of the holes within tolerance without compromising tool life. A response surface model (RSM) is used for modelling the drill wear and surface roughness with speed, feed, acceleration and force signals as inputs. The model predicts the wear and roughness with prediction accuracies of 97.1% and 93.6%, respectively. The roughness control is achieved through a Massachusetts Institute of Technology rule and tool wear is minimised by genetic algorithm optimisation. The adaptive algorithms are simulated and validated for the machining conditions given by the adaptive algorithms. The results show an improved tool life of 7% and surface roughness of 11%.","PeriodicalId":13956,"journal":{"name":"Insight","volume":"207 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135707294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}