Informatics in Medicine Unlocked最新文献

筛选
英文 中文
Structural modification of Naproxen; physicochemical, spectral, medicinal, and pharmacological evaluation 萘普生的结构修饰物理化学、光谱、药物和药理学评价
Informatics in Medicine Unlocked Pub Date : 2025-01-01 DOI: 10.1016/j.imu.2025.101617
Md Omor Farque , Rahat Moinul Islam , Md Ferdous Rahman Joni , Mimona Akter , Shilpy Akter , Mohammad Didarul Islam , MD Jubaer Bin Salim , Ahamed Abdul Aziz , Emranul Kabir , Monir Uzzaman
{"title":"Structural modification of Naproxen; physicochemical, spectral, medicinal, and pharmacological evaluation","authors":"Md Omor Farque ,&nbsp;Rahat Moinul Islam ,&nbsp;Md Ferdous Rahman Joni ,&nbsp;Mimona Akter ,&nbsp;Shilpy Akter ,&nbsp;Mohammad Didarul Islam ,&nbsp;MD Jubaer Bin Salim ,&nbsp;Ahamed Abdul Aziz ,&nbsp;Emranul Kabir ,&nbsp;Monir Uzzaman","doi":"10.1016/j.imu.2025.101617","DOIUrl":"10.1016/j.imu.2025.101617","url":null,"abstract":"<div><div>Naproxen (Nap), a widely used nonsteroidal anti-inflammatory drug (NSAID), effectively reduces inflammation, pain, and fever by inhibiting cyclooxygenase enzymes (i.e., COX-1 and COX-2). However, its therapeutic use is often limited by significant adverse effects, including gastrointestinal hemorrhage, nephrotoxicity, hepatotoxicity, hematuria, and aphthous ulcers. In this study, we aimed to enhance both the efficacy and safety profile of Nap by making targeted structural modifications to the parent drug. Specifically, selected functional groups (i.e., CH<sub>3,</sub> OCH<sub>3</sub>, CF<sub>3</sub>, OCF<sub>3</sub>, NH<sub>2</sub>, CH<sub>2</sub>NH<sub>2</sub>, NHCONH<sub>2</sub> and NHCOCH<sub>3</sub>) were introduced into the naphthalene nucleus. The geometry of the modified compounds was optimized via DFT with the B3LYP functional and 6-31+G (d, p) basis set, facilitating physicochemical and spectral analysis. Molecular docking studies were conducted against the human Prostaglandin G/H synthase 2 (5F19) and <em>Mus musculus</em> Prostaglandin-endoperoxide synthase 2 (3NT1), and these candidates were subjected to MD simulation. ADMET and PASS analyses were performed to evaluate the medicinal efficacy and toxicological profiles of the derivatives. Our findings identified several promising candidates with enhanced therapeutic benefits and reduced toxicity compared with the parent Nap. Docking analysis revealed that analogs exhibited stronger binding affinities compared to Nap and selectivity towards COX-2. These candidates demonstrated stability over a 100 ns MD simulation, exhibiting significant hydrogen bonding. Compared with the parent drug, most of these analogs displayed reduced hepatotoxicity, nephrotoxicity, carcinogenicity, and gastrointestinal hemorrhage activity, as supported by pharmacokinetic calculations. This study demonstrated that improved chemical and medicinal properties lead to a reduction in side effects.</div></div>","PeriodicalId":13953,"journal":{"name":"Informatics in Medicine Unlocked","volume":"53 ","pages":"Article 101617"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143103458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
End-to-end machine learning based discrimination of neoplastic and non-neoplastic intracerebral hemorrhage on computed tomography 基于端到端机器学习的计算机断层扫描肿瘤性和非肿瘤性脑出血鉴别
Informatics in Medicine Unlocked Pub Date : 2025-01-01 DOI: 10.1016/j.imu.2025.101633
Jawed Nawabi , Sophia Schulze-Weddige , Georg Lukas Baumgärtner , Tobias Orth , Andrea Dell'Orco , Andrea Morotti , Federico Mazzacane , Helge Kniep , Uta Hanning , Michael Scheel , Jens Fiehler , Tobias Penzkofer
{"title":"End-to-end machine learning based discrimination of neoplastic and non-neoplastic intracerebral hemorrhage on computed tomography","authors":"Jawed Nawabi ,&nbsp;Sophia Schulze-Weddige ,&nbsp;Georg Lukas Baumgärtner ,&nbsp;Tobias Orth ,&nbsp;Andrea Dell'Orco ,&nbsp;Andrea Morotti ,&nbsp;Federico Mazzacane ,&nbsp;Helge Kniep ,&nbsp;Uta Hanning ,&nbsp;Michael Scheel ,&nbsp;Jens Fiehler ,&nbsp;Tobias Penzkofer","doi":"10.1016/j.imu.2025.101633","DOIUrl":"10.1016/j.imu.2025.101633","url":null,"abstract":"<div><h3>Purpose</h3><div>To develop and evaluate a fully automated segmentation and classification tool for the discrimination of neoplastic and non-neoplastic intracerebral hemorrhage (ICH) on admission Computed Tomography (CT).</div></div><div><h3>Materials and methods</h3><div>Two models were developed using a retrospective dataset of acute ICH patients with unknown etiology upon admission, based on CT scans from a single institution (January 2016 to May 2020). An nnU-Net segmentation model was trained on manually segmented ICH and perihematomal edema (PHE) masks, alongside a ResNet-34 classification model for differentiating between neoplastic and non-neoplastic ICH. The combined tool was evaluated on the test set and validated on an external cohort. Validation performance was reevaluated after enriching the training data of the segmentation model. Evaluation metrics included accuracy (Acc), area under the curve (AUC), sensitivity, specificity, and Matthews Correlation Coefficient (MCC). Performance was compared to human raters.</div></div><div><h3>Results</h3><div>Among 291 patients, 116 (39.86 %) had neoplastic and 175 (60.14 %) non-neoplastic ICH. The tool achieved an Acc of 86 % and an AUC of 85 % with a sensitivity and specificity of 80 % and 93 % in the test set. On the validation cohort (n = 58), the tool achieved an AUC of 68 % reaching 83 % after retraining of the segmentation model. The tool achieved an MCC of 0.62, compared to 0.47–0.61 for the human raters.</div></div><div><h3>Conclusion</h3><div>The tool demonstrated high diagnostic performance with potential as a decision-aiding tool; however, it relies on multi-vendor data for improved robustness, warranting further validation across diverse datasets.</div></div>","PeriodicalId":13953,"journal":{"name":"Informatics in Medicine Unlocked","volume":"54 ","pages":"Article 101633"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143600504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Statistical analysis and machine learning of TMS-induced MEPs for predicting poststroke motor impairment and performance 经颅磁刺激诱发的MEPs的统计分析和机器学习预测脑卒中后运动损伤和表现
Informatics in Medicine Unlocked Pub Date : 2025-01-01 DOI: 10.1016/j.imu.2025.101643
Chun-Ren Phang , Shintaro Uehara , Sachiko Kodera , Akiko Yuasa , Shin Kitamura , Yohei Otaka , Akimasa Hirata
{"title":"Statistical analysis and machine learning of TMS-induced MEPs for predicting poststroke motor impairment and performance","authors":"Chun-Ren Phang ,&nbsp;Shintaro Uehara ,&nbsp;Sachiko Kodera ,&nbsp;Akiko Yuasa ,&nbsp;Shin Kitamura ,&nbsp;Yohei Otaka ,&nbsp;Akimasa Hirata","doi":"10.1016/j.imu.2025.101643","DOIUrl":"10.1016/j.imu.2025.101643","url":null,"abstract":"<div><div>Stroke severity is associated with the presence or absence of motor-evoked potentials (MEPs) induced by transcranial magnetic stimulation (TMS). However, there is limited evidence regarding the relationship between MEP waveforms, post-stroke motor impairment, and functional performance. This study aimed to evaluate the predictive value of inter-trial correlation (ITC), a novel metric reflecting waveform consistency, along with MEP amplitude and resting motor threshold (rMT), in estimating post-stroke motor outcomes. Thirty-eight stroke participants were enrolled, and TMS was applied to the hotspot of the first dorsal interosseous muscle in the ipsilesional or contralesional hemisphere to elicit MEPs. MEP amplitude, ITC, and rMT were analyzed in 20 participants with detectable MEPs. Pearson correlation coefficient (PCC) analysis assessed the relationships between MEP features and motor outcomes, including the Stroke Impairment Assessment Set (SIAS), Fugl-Meyer Assessment (FMA), and Action Research Arm Test (ARAT). A linear support vector machine (SVM) was trained using leave-one-subject-out cross-validation to predict the motor outcomes. Participants without detectable MEPs (n = 18) had significantly lower motor scores than those with detectable MEPs did. MEP amplitude from the contralesional side was positively correlated with SIAS, FMA, and ARAT (PCC = 0.51, 0.47, and 0.55, respectively), whereas LICI amplitude and ITC from the ipsilesional side were negatively correlated with motor scores. The SVM model predicted motor outcomes with an R<sup>2</sup> of 0.42 and a normalized root mean square error of 0.26. A Gaussian classifier achieved 75 % accuracy in classifying motor outcome improvements. These findings suggest that bilateral MEP features, particularly those from the contralesional hemisphere, offer valuable prognostic information. This study proposes a practical framework for post-stroke motor outcome prediction based on MEP analysis with potential utility in individualized rehabilitation planning.</div></div>","PeriodicalId":13953,"journal":{"name":"Informatics in Medicine Unlocked","volume":"55 ","pages":"Article 101643"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143891006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reducing lead requirements for wearable ECG: Chest lead reconstruction with 1D-CNN and Bi-LSTM 减少可穿戴心电图的导联需求:用1D-CNN和Bi-LSTM进行胸导联重建
Informatics in Medicine Unlocked Pub Date : 2025-01-01 DOI: 10.1016/j.imu.2025.101624
Kazuki Hebiguchi , Hiroyoshi Togo , Akimasa Hirata
{"title":"Reducing lead requirements for wearable ECG: Chest lead reconstruction with 1D-CNN and Bi-LSTM","authors":"Kazuki Hebiguchi ,&nbsp;Hiroyoshi Togo ,&nbsp;Akimasa Hirata","doi":"10.1016/j.imu.2025.101624","DOIUrl":"10.1016/j.imu.2025.101624","url":null,"abstract":"<div><div>Wearable ECG devices encounter significant challenges in replicating the diagnostic capabilities of standard 12-lead ECGs, primarily due to the complexity of electrode placement and the need for specialized equipment. This study aims to develop a deep learning model capable of reconstructing complete 12-lead ECG waveforms using a minimal number of chest leads, thereby optimizing lead configurations for wearable ECG systems. Leveraging the PTB-XL ECG dataset, we preprocessed the signals to eliminate noise and trained a model integrating 1D convolutional layers with a Bi-directional Long Short-Term Memory (Bi-LSTM) architecture. Reconstruction performance was assessed using Pearson's correlation coefficient and root mean squared error (RMSE) across various input lead configurations, ranging from single to quintuple inputs. Our preprocessing and network architecture effectively capture both spatial and temporal features. The model achieved its highest reconstruction accuracy for leads located near the input leads, with performance gradually diminishing for more distant leads. Notably, the transitional zone between leads V<sub>3</sub> and V<sub>4</sub> presented reconstruction challenges due to polarity shifts. While increasing the number of input leads enhanced reconstruction accuracy and reduced variability, the improvements plateaued beyond the use of double input leads. Among configurations, double input leads, particularly those with two intervening leads between input pairs, offered an optimal balance between reconstruction accuracy and model complexity. This study highlights that accurate reconstruction of 12-lead ECG is achievable with only two input leads, providing a balance between diagnostic accuracy and reduced electrode requirements. These findings offer valuable insights for designing wearable ECG systems capable of reliable monitoring with fewer electrodes.</div></div>","PeriodicalId":13953,"journal":{"name":"Informatics in Medicine Unlocked","volume":"53 ","pages":"Article 101624"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143372759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the secrets of neural network scaling for ECG classification 揭示心电分类中神经网络尺度的秘密
Informatics in Medicine Unlocked Pub Date : 2025-01-01 DOI: 10.1016/j.imu.2025.101639
Byeong Tak Lee, Joon-myoung Kwon, Yong-Yeon Jo
{"title":"Unveiling the secrets of neural network scaling for ECG classification","authors":"Byeong Tak Lee,&nbsp;Joon-myoung Kwon,&nbsp;Yong-Yeon Jo","doi":"10.1016/j.imu.2025.101639","DOIUrl":"10.1016/j.imu.2025.101639","url":null,"abstract":"<div><div>We present a new perspective on scaling neural networks for electrocardiograms (ECG). Although ResNet-based models are widely used in ECG classification, the potential benefits of network scaling remain unexplored. Our research investigates the impact of changes in the depth of layers, the number of channels, and the dimensions of the convolution kernels on performance. Contrary to computer vision practices, we found that shallower networks, with more channels and smaller kernels, lead to better performance for ECG classifications. Based on these findings, we provide insights that can guide the efficient development of models in practice. Finally, we explore why scaling hyperparameters affects ECG and computer vision differently. Our findings suggest that the inherent periodicity of the ECG signals plays a crucial role in this difference.</div></div>","PeriodicalId":13953,"journal":{"name":"Informatics in Medicine Unlocked","volume":"55 ","pages":"Article 101639"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143839755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Informatics-driven unsupervised learning of comorbidity clusters for COVID-19 reinfection risk: A finite mixture modeling approach COVID-19再感染风险共病集群的信息驱动无监督学习:一种有限混合建模方法
Informatics in Medicine Unlocked Pub Date : 2025-01-01 DOI: 10.1016/j.imu.2025.101649
Grant B. Morgan , Andreas Stamatis , Chelsea C. Yager , Ali Boolani
{"title":"Informatics-driven unsupervised learning of comorbidity clusters for COVID-19 reinfection risk: A finite mixture modeling approach","authors":"Grant B. Morgan ,&nbsp;Andreas Stamatis ,&nbsp;Chelsea C. Yager ,&nbsp;Ali Boolani","doi":"10.1016/j.imu.2025.101649","DOIUrl":"10.1016/j.imu.2025.101649","url":null,"abstract":"<div><h3>Purpose</h3><div>This study applied an informatics-focused, unsupervised learning framework (finite mixture modeling) to determine whether distinct clusters of coexisting conditions among patients with coronavirus disease 2019 (COVID-19) are associated with multiple (reinfection) versus single infections.</div></div><div><h3>Methods</h3><div>We analyzed 42,974 patient records containing COVID-19 diagnoses using an machine learning classification algorithm to identify comorbidity profiles. Of nearly 850 recorded conditions, 29 were retained if they occurred in at least 5 % of the sample. We then compared patients with single versus multiple COVID-19 diagnoses within each profile.</div></div><div><h3>Results</h3><div>Three comorbidity profiles emerged. The first profile (Minimal Comorbidity) was the largest (67 % of sample) and was characterized by few additional conditions. Patients classified into this profile were also 20–30 years younger, on average, than members of the other profiles. The second (Elevated Select Comorbidity) profile consisted of 24 % of the sample and was characterized by moderate-risk factors such as hypertension, hyperlipidemia, and acute respiratory failure. The third (High Comorbidity Burden) third was represented by 9 % of the sample and was characterized by conditions related to cardiovascular, renal, endocrine, and respiratory systems. Among the high-burden group, 30 % experienced reinfection, versus only 9 % in the minimal group. Overall, patients with more extensive cardiometabolic or pulmonary conditions were more likely to experience repeated infection.</div></div><div><h3>Conclusions</h3><div>By identifying and characterizing comorbidity clusters, this informatics-based approach offers deeper insight into COVID-19 reinfection dynamics. The findings may support targeted prevention, data-driven resource allocation, and precision medicine strategies by highlighting subgroups at elevated risk. Moreover, the unsupervised modeling framework is potentially adaptable to other multifactorial conditions, underscoring its broader utility in medical informatics.</div></div>","PeriodicalId":13953,"journal":{"name":"Informatics in Medicine Unlocked","volume":"55 ","pages":"Article 101649"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143912692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of machine learning in infectious disease early detection and prediction in the MENA region: A systematic review 机器学习在中东和北非地区传染病早期检测和预测中的作用:系统综述
Informatics in Medicine Unlocked Pub Date : 2025-01-01 DOI: 10.1016/j.imu.2025.101651
Radwan Qasrawi , Ghada Issa , Suliman Thwib , Razan AbuGhoush , Malak Amro , Raghad Ayyad , Stephanny Vicuna , Eman Badran , Yousef Khader , Raeda Al Qutob , Faris Al Bakri , Hana Trigui , Elie Sokhn , Emmanuel Musa , Jude Dzevela Kong
{"title":"The role of machine learning in infectious disease early detection and prediction in the MENA region: A systematic review","authors":"Radwan Qasrawi ,&nbsp;Ghada Issa ,&nbsp;Suliman Thwib ,&nbsp;Razan AbuGhoush ,&nbsp;Malak Amro ,&nbsp;Raghad Ayyad ,&nbsp;Stephanny Vicuna ,&nbsp;Eman Badran ,&nbsp;Yousef Khader ,&nbsp;Raeda Al Qutob ,&nbsp;Faris Al Bakri ,&nbsp;Hana Trigui ,&nbsp;Elie Sokhn ,&nbsp;Emmanuel Musa ,&nbsp;Jude Dzevela Kong","doi":"10.1016/j.imu.2025.101651","DOIUrl":"10.1016/j.imu.2025.101651","url":null,"abstract":"<div><div>This systematic review analyzes the implementation and effectiveness of machine learning (ML) approaches for infectious disease surveillance and prediction across the Middle East and North Africa (MENA) region. Adhering to PRISMA guidelines, studies published between 2016 and 2024 were examined to assess model structures, performance metrics, and dataset characteristics. The findings reveal a predominance of deep learning approaches, particularly Convolutional Neural Networks (CNNs), achieving mean accuracy rates of 96.3 % in pathogen detection from medical imaging. Random Forest algorithms demonstrated superior performance in disease outbreak prediction, with mean ACC scores of 0.85. Iran, Saudi Arabia, and Egypt emerged as regional leaders, collectively contributing 54 % of the analyzed studies. The temporal analysis showed peak research output in 2022 (n = 30 studies), followed by a 25 % decline in 2023. Despite promising performance, challenges such as data quality, infrastructural limitations, and algorithmic bias persist. This review highlights the need for standardized protocols, enhanced digital infrastructure, and collaborative efforts to realize the full potential of ML in enhancing public health interventions across the region. Future research directions should prioritize multi-center validation studies, standardized reporting frameworks, and integration of diverse data modalities to enhance model robustness and clinical applicability.</div></div>","PeriodicalId":13953,"journal":{"name":"Informatics in Medicine Unlocked","volume":"56 ","pages":"Article 101651"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143941071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid attention-enhanced MobileNetV2 with particle swarm optimization for endometrial cancer classification in CT images 混合注意增强MobileNetV2与粒子群优化用于子宫内膜癌CT图像分类
Informatics in Medicine Unlocked Pub Date : 2025-01-01 DOI: 10.1016/j.imu.2025.101662
Omar F. Altal , Amer Mahmoud Sindiani , Mohammad Amin , Hamad Yahia Abu Mhanna , Raneem Hamad , Hasan Gharaibeh , Hanan Fawaz Akhdar , Salem Alhatamleh , Rawan Eimad Almahmoud , Omar H. Abu-azzam , Mohammad Balaw , Bashar Haj Hamoud , Fatimah Maashey , Latifah Alghulayqah
{"title":"Hybrid attention-enhanced MobileNetV2 with particle swarm optimization for endometrial cancer classification in CT images","authors":"Omar F. Altal ,&nbsp;Amer Mahmoud Sindiani ,&nbsp;Mohammad Amin ,&nbsp;Hamad Yahia Abu Mhanna ,&nbsp;Raneem Hamad ,&nbsp;Hasan Gharaibeh ,&nbsp;Hanan Fawaz Akhdar ,&nbsp;Salem Alhatamleh ,&nbsp;Rawan Eimad Almahmoud ,&nbsp;Omar H. Abu-azzam ,&nbsp;Mohammad Balaw ,&nbsp;Bashar Haj Hamoud ,&nbsp;Fatimah Maashey ,&nbsp;Latifah Alghulayqah","doi":"10.1016/j.imu.2025.101662","DOIUrl":"10.1016/j.imu.2025.101662","url":null,"abstract":"<div><div>Endometrial cancer is a form of uterine cancer that is known to be deadly and shows a strong therapeutic response if diagnosed at an early stage. The inability of traditional endometrial cancer methods to provide timely and cost-effective diagnosis has been transformed with the introduction of computational techniques driven by oncologists and data scientists. Deep learning, the most important branch of artificial intelligence, has found increasing importance in diagnosing endometrial cancer. This paper presents a novel methodology for accurate diagnosis of endometrial cancer computed tomography (CT) images, based on the use of a hybrid deep learning framework to develop a novel methodology that automates hyperparameter optimization and enhances feature recognition by integrating dual attention and particle swarm optimization (PSO) techniques. The pre-trained MobileNetV2 backbone uses geometric transformations (rotations, translations, and reflections) while extracting hierarchical features from CT slices to mitigate data scarcity. PSO is used to enhance the hyperparameters governing the attention and regularization modules. The method combines efficient swarm-based optimization and adaptive attention mechanisms, improving the discrimination between different images and establishing a reproducible pipeline for medical imaging applications with less illustrative data. The performance of the model was validated using a new dataset, collected from King Abdullah University Hospital in Jordan by physicians, and the proposed model achieved an accuracy of 86.07 %, a precision of 86.75 %, a sensitivity of 86.02 %, a specificity of 91.45 %, and an AUC of 97.33 %. , outperforming all previously trained models (MobileNetV2, VGG16, VGG19, ResNets50, NASNetMobile, and InceptionV3), on the King Abdullah University Hospital Endometrial Cancer Computed Tomography (KAUH-ECCTD) dataset. PSO optimization enabled effective tuning of key hyperparameters (learning rate, dropout rate, L2 regularization, number of neurons), directly enhancing model generalization and discrimination capability. The validated model, trained on a dataset collected from King Abdullah University Hospital (KAUH-ECCTD), has strong potential for real-world clinical applications as part of AI-assisted diagnostic tools and clinical decision support systems for oncologists. The proposed approach can enhance early detection, personalized treatment planning, and continuous monitoring in endometrial cancer management, thereby facilitating collaborative research between oncologists, biomedical engineers, and data scientists.</div></div>","PeriodicalId":13953,"journal":{"name":"Informatics in Medicine Unlocked","volume":"57 ","pages":"Article 101662"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144270115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterizing users and intention to use online health information resources: A comprehensive study 用户特征和使用在线健康信息资源的意向:一项综合研究
Informatics in Medicine Unlocked Pub Date : 2025-01-01 DOI: 10.1016/j.imu.2025.101640
André Michaud , Virginie Blanchette , François Boudreau , Sarah Lafontaine , Denis Leroux , Paule Miquelon , Michel Vallée , Joany Rousseau-Bédard , Lyne Cloutier
{"title":"Characterizing users and intention to use online health information resources: A comprehensive study","authors":"André Michaud ,&nbsp;Virginie Blanchette ,&nbsp;François Boudreau ,&nbsp;Sarah Lafontaine ,&nbsp;Denis Leroux ,&nbsp;Paule Miquelon ,&nbsp;Michel Vallée ,&nbsp;Joany Rousseau-Bédard ,&nbsp;Lyne Cloutier","doi":"10.1016/j.imu.2025.101640","DOIUrl":"10.1016/j.imu.2025.101640","url":null,"abstract":"","PeriodicalId":13953,"journal":{"name":"Informatics in Medicine Unlocked","volume":"55 ","pages":"Article 101640"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143839754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electronic health records in non-hospital settings of developing economies: A systematic review on enablers and barriers 发展中经济体非医院环境中的电子健康记录:对促进因素和障碍的系统审查
Informatics in Medicine Unlocked Pub Date : 2025-01-01 DOI: 10.1016/j.imu.2025.101634
Bejie Rodriguez , Joenelyn Kaye Demoral , Jan Jacob Carpio , Alan Napoleon Gultia , Gloria Shiela Coyoca , Cecilio Garciano Jr. , Lemuel Clark Velasco
{"title":"Electronic health records in non-hospital settings of developing economies: A systematic review on enablers and barriers","authors":"Bejie Rodriguez ,&nbsp;Joenelyn Kaye Demoral ,&nbsp;Jan Jacob Carpio ,&nbsp;Alan Napoleon Gultia ,&nbsp;Gloria Shiela Coyoca ,&nbsp;Cecilio Garciano Jr. ,&nbsp;Lemuel Clark Velasco","doi":"10.1016/j.imu.2025.101634","DOIUrl":"10.1016/j.imu.2025.101634","url":null,"abstract":"<div><div>In recent years, rapid advancements in Information and Communications Technology (ICT) have greatly transformed the healthcare landscape by streamlining health data management and providing decision-makers with secure and convenient access to health records. In developing economies, limited resources hinder healthcare access. Implementing EHRs in non-hospital settings is essential for enhancing healthcare quality and accessibility. While existing literature supports EHR use, further research is needed to pinpoint specific barriers and enablers. Using PRISMA guidelines, 18 relevant articles were systematically analyzed with the Human, Organization, and Technology Fit (HOT-fit) framework to examine these factors in non-hospital settings within developing economies. This study found that human factors take precedence in both enablers and barriers. The first two barriers emphasize the human element, highlighting the critical importance of addressing individual user challenges. However, organizational issues take on a supporting role, highlighting the possibility that the prominence of user-centric challenges stems from the lack of devolution of governance and leadership in non-hospital settings. Additionally, the findings indicate that prioritizing robust IT infrastructure, which meets both functional and usability requirements, remains a fundamental concern for EHR implementation. By focusing on the enablers and barriers of EHR implementation, this study highlights the research gaps that can be explored as well as the potential and challenges that are faced by healthcare systems within the non-hospital settings of -developing economies. From these findings, we infer that further research is needed to identify specific training components for EHR systems to enable individuals for effective system use in non-hospital settings.</div></div>","PeriodicalId":13953,"journal":{"name":"Informatics in Medicine Unlocked","volume":"54 ","pages":"Article 101634"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143642421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信