Jawed Nawabi , Sophia Schulze-Weddige , Georg Lukas Baumgärtner , Tobias Orth , Andrea Dell'Orco , Andrea Morotti , Federico Mazzacane , Helge Kniep , Uta Hanning , Michael Scheel , Jens Fiehler , Tobias Penzkofer
{"title":"End-to-end machine learning based discrimination of neoplastic and non-neoplastic intracerebral hemorrhage on computed tomography","authors":"Jawed Nawabi , Sophia Schulze-Weddige , Georg Lukas Baumgärtner , Tobias Orth , Andrea Dell'Orco , Andrea Morotti , Federico Mazzacane , Helge Kniep , Uta Hanning , Michael Scheel , Jens Fiehler , Tobias Penzkofer","doi":"10.1016/j.imu.2025.101633","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>To develop and evaluate a fully automated segmentation and classification tool for the discrimination of neoplastic and non-neoplastic intracerebral hemorrhage (ICH) on admission Computed Tomography (CT).</div></div><div><h3>Materials and methods</h3><div>Two models were developed using a retrospective dataset of acute ICH patients with unknown etiology upon admission, based on CT scans from a single institution (January 2016 to May 2020). An nnU-Net segmentation model was trained on manually segmented ICH and perihematomal edema (PHE) masks, alongside a ResNet-34 classification model for differentiating between neoplastic and non-neoplastic ICH. The combined tool was evaluated on the test set and validated on an external cohort. Validation performance was reevaluated after enriching the training data of the segmentation model. Evaluation metrics included accuracy (Acc), area under the curve (AUC), sensitivity, specificity, and Matthews Correlation Coefficient (MCC). Performance was compared to human raters.</div></div><div><h3>Results</h3><div>Among 291 patients, 116 (39.86 %) had neoplastic and 175 (60.14 %) non-neoplastic ICH. The tool achieved an Acc of 86 % and an AUC of 85 % with a sensitivity and specificity of 80 % and 93 % in the test set. On the validation cohort (n = 58), the tool achieved an AUC of 68 % reaching 83 % after retraining of the segmentation model. The tool achieved an MCC of 0.62, compared to 0.47–0.61 for the human raters.</div></div><div><h3>Conclusion</h3><div>The tool demonstrated high diagnostic performance with potential as a decision-aiding tool; however, it relies on multi-vendor data for improved robustness, warranting further validation across diverse datasets.</div></div>","PeriodicalId":13953,"journal":{"name":"Informatics in Medicine Unlocked","volume":"54 ","pages":"Article 101633"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics in Medicine Unlocked","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352914825000218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
To develop and evaluate a fully automated segmentation and classification tool for the discrimination of neoplastic and non-neoplastic intracerebral hemorrhage (ICH) on admission Computed Tomography (CT).
Materials and methods
Two models were developed using a retrospective dataset of acute ICH patients with unknown etiology upon admission, based on CT scans from a single institution (January 2016 to May 2020). An nnU-Net segmentation model was trained on manually segmented ICH and perihematomal edema (PHE) masks, alongside a ResNet-34 classification model for differentiating between neoplastic and non-neoplastic ICH. The combined tool was evaluated on the test set and validated on an external cohort. Validation performance was reevaluated after enriching the training data of the segmentation model. Evaluation metrics included accuracy (Acc), area under the curve (AUC), sensitivity, specificity, and Matthews Correlation Coefficient (MCC). Performance was compared to human raters.
Results
Among 291 patients, 116 (39.86 %) had neoplastic and 175 (60.14 %) non-neoplastic ICH. The tool achieved an Acc of 86 % and an AUC of 85 % with a sensitivity and specificity of 80 % and 93 % in the test set. On the validation cohort (n = 58), the tool achieved an AUC of 68 % reaching 83 % after retraining of the segmentation model. The tool achieved an MCC of 0.62, compared to 0.47–0.61 for the human raters.
Conclusion
The tool demonstrated high diagnostic performance with potential as a decision-aiding tool; however, it relies on multi-vendor data for improved robustness, warranting further validation across diverse datasets.
期刊介绍:
Informatics in Medicine Unlocked (IMU) is an international gold open access journal covering a broad spectrum of topics within medical informatics, including (but not limited to) papers focusing on imaging, pathology, teledermatology, public health, ophthalmological, nursing and translational medicine informatics. The full papers that are published in the journal are accessible to all who visit the website.