Structural modification of Naproxen; physicochemical, spectral, medicinal, and pharmacological evaluation

Q1 Medicine
Md Omor Farque , Rahat Moinul Islam , Md Ferdous Rahman Joni , Mimona Akter , Shilpy Akter , Mohammad Didarul Islam , MD Jubaer Bin Salim , Ahamed Abdul Aziz , Emranul Kabir , Monir Uzzaman
{"title":"Structural modification of Naproxen; physicochemical, spectral, medicinal, and pharmacological evaluation","authors":"Md Omor Farque ,&nbsp;Rahat Moinul Islam ,&nbsp;Md Ferdous Rahman Joni ,&nbsp;Mimona Akter ,&nbsp;Shilpy Akter ,&nbsp;Mohammad Didarul Islam ,&nbsp;MD Jubaer Bin Salim ,&nbsp;Ahamed Abdul Aziz ,&nbsp;Emranul Kabir ,&nbsp;Monir Uzzaman","doi":"10.1016/j.imu.2025.101617","DOIUrl":null,"url":null,"abstract":"<div><div>Naproxen (Nap), a widely used nonsteroidal anti-inflammatory drug (NSAID), effectively reduces inflammation, pain, and fever by inhibiting cyclooxygenase enzymes (i.e., COX-1 and COX-2). However, its therapeutic use is often limited by significant adverse effects, including gastrointestinal hemorrhage, nephrotoxicity, hepatotoxicity, hematuria, and aphthous ulcers. In this study, we aimed to enhance both the efficacy and safety profile of Nap by making targeted structural modifications to the parent drug. Specifically, selected functional groups (i.e., CH<sub>3,</sub> OCH<sub>3</sub>, CF<sub>3</sub>, OCF<sub>3</sub>, NH<sub>2</sub>, CH<sub>2</sub>NH<sub>2</sub>, NHCONH<sub>2</sub> and NHCOCH<sub>3</sub>) were introduced into the naphthalene nucleus. The geometry of the modified compounds was optimized via DFT with the B3LYP functional and 6-31+G (d, p) basis set, facilitating physicochemical and spectral analysis. Molecular docking studies were conducted against the human Prostaglandin G/H synthase 2 (5F19) and <em>Mus musculus</em> Prostaglandin-endoperoxide synthase 2 (3NT1), and these candidates were subjected to MD simulation. ADMET and PASS analyses were performed to evaluate the medicinal efficacy and toxicological profiles of the derivatives. Our findings identified several promising candidates with enhanced therapeutic benefits and reduced toxicity compared with the parent Nap. Docking analysis revealed that analogs exhibited stronger binding affinities compared to Nap and selectivity towards COX-2. These candidates demonstrated stability over a 100 ns MD simulation, exhibiting significant hydrogen bonding. Compared with the parent drug, most of these analogs displayed reduced hepatotoxicity, nephrotoxicity, carcinogenicity, and gastrointestinal hemorrhage activity, as supported by pharmacokinetic calculations. This study demonstrated that improved chemical and medicinal properties lead to a reduction in side effects.</div></div>","PeriodicalId":13953,"journal":{"name":"Informatics in Medicine Unlocked","volume":"53 ","pages":"Article 101617"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics in Medicine Unlocked","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235291482500005X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Naproxen (Nap), a widely used nonsteroidal anti-inflammatory drug (NSAID), effectively reduces inflammation, pain, and fever by inhibiting cyclooxygenase enzymes (i.e., COX-1 and COX-2). However, its therapeutic use is often limited by significant adverse effects, including gastrointestinal hemorrhage, nephrotoxicity, hepatotoxicity, hematuria, and aphthous ulcers. In this study, we aimed to enhance both the efficacy and safety profile of Nap by making targeted structural modifications to the parent drug. Specifically, selected functional groups (i.e., CH3, OCH3, CF3, OCF3, NH2, CH2NH2, NHCONH2 and NHCOCH3) were introduced into the naphthalene nucleus. The geometry of the modified compounds was optimized via DFT with the B3LYP functional and 6-31+G (d, p) basis set, facilitating physicochemical and spectral analysis. Molecular docking studies were conducted against the human Prostaglandin G/H synthase 2 (5F19) and Mus musculus Prostaglandin-endoperoxide synthase 2 (3NT1), and these candidates were subjected to MD simulation. ADMET and PASS analyses were performed to evaluate the medicinal efficacy and toxicological profiles of the derivatives. Our findings identified several promising candidates with enhanced therapeutic benefits and reduced toxicity compared with the parent Nap. Docking analysis revealed that analogs exhibited stronger binding affinities compared to Nap and selectivity towards COX-2. These candidates demonstrated stability over a 100 ns MD simulation, exhibiting significant hydrogen bonding. Compared with the parent drug, most of these analogs displayed reduced hepatotoxicity, nephrotoxicity, carcinogenicity, and gastrointestinal hemorrhage activity, as supported by pharmacokinetic calculations. This study demonstrated that improved chemical and medicinal properties lead to a reduction in side effects.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Informatics in Medicine Unlocked
Informatics in Medicine Unlocked Medicine-Health Informatics
CiteScore
9.50
自引率
0.00%
发文量
282
审稿时长
39 days
期刊介绍: Informatics in Medicine Unlocked (IMU) is an international gold open access journal covering a broad spectrum of topics within medical informatics, including (but not limited to) papers focusing on imaging, pathology, teledermatology, public health, ophthalmological, nursing and translational medicine informatics. The full papers that are published in the journal are accessible to all who visit the website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信