International Journal of Agricultural and Biological Engineering最新文献

筛选
英文 中文
Effects of self-healing biomimetic subsoiler on tillage resistance, wear-corrosion performance and soil disturbance morphology under different soil types 自修复仿生深层土壤对不同土壤类型下土壤抗耕性能、耐磨性和扰动形态的影响
2区 农林科学
International Journal of Agricultural and Biological Engineering Pub Date : 2023-01-01 DOI: 10.25165/j.ijabe.20231603.7876
Yueming Wang, Chenjie Lu, Jing Chen, Chenhuan Cui, Yijie Pan, Wilhelm Pfleging, Jiyu Sun
{"title":"Effects of self-healing biomimetic subsoiler on tillage resistance, wear-corrosion performance and soil disturbance morphology under different soil types","authors":"Yueming Wang, Chenjie Lu, Jing Chen, Chenhuan Cui, Yijie Pan, Wilhelm Pfleging, Jiyu Sun","doi":"10.25165/j.ijabe.20231603.7876","DOIUrl":"https://doi.org/10.25165/j.ijabe.20231603.7876","url":null,"abstract":"Subsoiling has been widely used all over the world as an important operation method of no-tillage farming. For energy-saving and life-extension, the tillage resistance and wear-corrosion of subsoilers have attracted wide attention. In this study, the tillage resistance, soil disturbance, wear and corrosion of subsoiler with S-T-SK-2# biomimetic structures (S means subsoiler; T means tine; SK means shank; 2#, h/s=0.57, h=5 mm and α=45°.) and self-healing coating under two seasons, two locations with different soil properties (black loam and clay soil) and subsoiling speeds (2 km/h and 3.6 km/h) were investigated. The soil moisture content and compactness affected the tillage resistance and wear-corrosion. The tillage resistance and degree of corrosion on all subsoilers were much larger in clay soil than that in black loam soil. Compared with S-T-SK-2#, the tillage reduction rate of C-S-T-SK-2# (S-T-SK-2# with self-healing coating) was up to 14.32% in clay soil under the speed of 2 km/h. The significance tests of regression equation results showed that subsoiler type and soil properties had a significant impact on soil disturbance coefficient, swelling of total soil layer, bulkiness of the plough pan. It is of a guiding significance for the analysis of soil disturbance. Synergism mechanism of subsoiler coupling with biomimetic structures and self-healing coating was analyzed in following. It depicted the guiding effect of biomimetic structure and the shield function of self-healing coating, resulting in anticorrosion and wear resistance of subsoiler. Keywords: soil types, tillage resistance, wear-corrosion, soil disturbance, self-healing DOI: 10.25165/j.ijabe.20231603.7876 Citation: Wang Y M, Lu C J, Chen J, Cui C H, Pan Y J, Pfleging W, et al. Effects of self-healing biomimetic subsoiler on tillage resistance, wear-corrosion performance and soil disturbance morphology under different soil types. Int J Agric & Biol Eng, 2023; 16(3): 7–14.","PeriodicalId":13895,"journal":{"name":"International Journal of Agricultural and Biological Engineering","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135357562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automatic detection of sow estrus using a lightweight real-time detector and thermal images 使用轻型实时检测器和热图像自动检测母猪发情
2区 农林科学
International Journal of Agricultural and Biological Engineering Pub Date : 2023-01-01 DOI: 10.25165/j.ijabe.20231603.7711
Haibo Zheng, Hang Zhang, Shuang Song, Yue Wang, Tonghai Liu
{"title":"Automatic detection of sow estrus using a lightweight real-time detector and thermal images","authors":"Haibo Zheng, Hang Zhang, Shuang Song, Yue Wang, Tonghai Liu","doi":"10.25165/j.ijabe.20231603.7711","DOIUrl":"https://doi.org/10.25165/j.ijabe.20231603.7711","url":null,"abstract":"","PeriodicalId":13895,"journal":{"name":"International Journal of Agricultural and Biological Engineering","volume":"124 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135361583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Design and testing of planting unit for rice dry-direct-seeding planter in cold region 寒区水稻旱作直播播种机种植装置的设计与试验
2区 农林科学
International Journal of Agricultural and Biological Engineering Pub Date : 2023-01-01 DOI: 10.25165/j.ijabe.20231604.7843
Jiale Zhao, Chengliang Zhang, Yanpeng Wei, Mingzhuo Guo, Chao Chen, Chongqin Zhang, Yungan Zhang
{"title":"Design and testing of planting unit for rice dry-direct-seeding planter in cold region","authors":"Jiale Zhao, Chengliang Zhang, Yanpeng Wei, Mingzhuo Guo, Chao Chen, Chongqin Zhang, Yungan Zhang","doi":"10.25165/j.ijabe.20231604.7843","DOIUrl":"https://doi.org/10.25165/j.ijabe.20231604.7843","url":null,"abstract":"Rice dry-direct-seeding technology is a time-saving, cost-saving and efficient rice cultivation technique that increases the efficiency of seeding. In order to implement the specialization, light simplicity and scale of rice production, improve the level of mechanization of the whole rice production process, and solve the problems of uneven seed furrows, uneven number of seeds sown, shallow mulching and uncompact repression that occur during the promotion and application of dry-direct-seeding for rice in the cold region of northeast China. In this paper, a planting unit for rice dry-direct-seeding planter is designed. The working principles and structural parameters of the furrow opening components, the seeding apparatus and the soil covering-pressing device are described. The mechanical model of the key components of the seeding unit was established, and the forward speed, roller diameter and compacting strength were selected as the test factors. A three-factor, five-level quadratic rotation orthogonal combination test was conducted with the seed breakage rate, seeding depth qualification rate, seeding uniformity coefficient of variation and hole grain count qualification rate as the evaluation indexes. Field performance test and test results show that: at a forward speed of 4 km/h, a roller diameter of 427 mm and a compacting strength of 48.45 kPa, the seed breakage rate was 1.31%, the sowing depth qualification rate was 9.95%, the coefficient of variation of sowing uniformity was 3.75% and the number of holes was 86.75%. This accords with the agronomic requirements of dry-direct-seeding for rice and implements a combination of superior agronomy and modern farm machinery. Keywords: rice, dry-direct-seeding, planting unit, structural design, testing research DOI: 10.25165/j.ijabe.20231604.7843 Citation: Zhao J L, Zhang C L, Wei Y P, Guo M Z, Chen C, Zhang C Q, et al. Design and testing of planting unit for rice dry-direct-seeding planter in cold region. Int J Agric & Biol Eng, 2023; 16(4): 76-84","PeriodicalId":13895,"journal":{"name":"International Journal of Agricultural and Biological Engineering","volume":"72 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135659788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Digital twins in smart farming: An autoware-based simulator for autonomous agricultural vehicles 智能农业中的数字孪生:用于自动农业车辆的基于汽车的模拟器
2区 农林科学
International Journal of Agricultural and Biological Engineering Pub Date : 2023-01-01 DOI: 10.25165/j.ijabe.20231604.8039
Xin Zhao, Wanli Wang, Long Wen, Zhibo Chen, Sixian Wu, Kun Zhou, Mengyao Sun, Lanjun Xu, Bingbing Hu, Caicong Wu
{"title":"Digital twins in smart farming: An autoware-based simulator for autonomous agricultural vehicles","authors":"Xin Zhao, Wanli Wang, Long Wen, Zhibo Chen, Sixian Wu, Kun Zhou, Mengyao Sun, Lanjun Xu, Bingbing Hu, Caicong Wu","doi":"10.25165/j.ijabe.20231604.8039","DOIUrl":"https://doi.org/10.25165/j.ijabe.20231604.8039","url":null,"abstract":"Digital twins can improve the level of control over physical entities and help manage complex systems by integrating a range of technologies. The autonomous agricultural machine has shown revolutionary effects on labor reduction and utilization rate in field works. Autonomous vehicles in precision agriculture have the potential to improve competitiveness compared to current crop production methods and have become a research hotspot. However, the development time and resources required in experiments have limited the research in this area. Simulation tools in unmanned farming that are required to enable more efficient, reliable, and safe autonomy are increasingly demanding. Inspired by the recent development of an open-source virtual simulation platform, this study proposed an autoware-based simulator to evaluate the performance of agricultural machine guidance based on digital twins. Oblique photogrammetry using drones is used to construct three-dimensional maps of fields at the same scale as reality. A communication format suitable for agricultural machines was developed for data input and output, along with an inter-node communication methodology. The conversion, publishing, and maintenance of multiple coordinate systems were completed based on ROS (Robot Operating System). Coverage path planning was performed using hybrid curves based on Bézier curves, and it was tested in both a simulation environment and actual fields with the aid of Pure Pursuit algorithms and PID controllers. Keywords: autoware, simulation platform, autonomous agricultural vehicle, digital twin; autonomous robots DOI: 10.25165/j.ijabe.20231604.8039 Citation: Zhao X, Wang W L, Wen L, Chen Z B, Wu S X, Zhou K, et al. Digital twins in smart farming: An autoware-based simulator for autonomous agricultural vehicles. Int J Agric & Biol Eng, 2023; 16(4): 185-190.","PeriodicalId":13895,"journal":{"name":"International Journal of Agricultural and Biological Engineering","volume":"72 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135660287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and experiment of fuzzy-PID based tillage depth control system for a self-propelled electric tiller 基于模糊pid的自行式电动分蘖机耕深控制系统设计与试验
2区 农林科学
International Journal of Agricultural and Biological Engineering Pub Date : 2023-01-01 DOI: 10.25165/j.ijabe.20231604.8116
Maohua Xiao, Ye Ma, Chen Wang, Junyun Chen, Yejun Zhu, Petr Bartos, Guosheng Geng
{"title":"Design and experiment of fuzzy-PID based tillage depth control system for a self-propelled electric tiller","authors":"Maohua Xiao, Ye Ma, Chen Wang, Junyun Chen, Yejun Zhu, Petr Bartos, Guosheng Geng","doi":"10.25165/j.ijabe.20231604.8116","DOIUrl":"https://doi.org/10.25165/j.ijabe.20231604.8116","url":null,"abstract":"The research on the self-propelled electric tiller is vital for further improving the quality and efficiency of greenhouse rotary tillage operation, reducing the work intensity and operation risk of operators, and achieving environmentally friendly characteristics. Most of the existing self-propelled tillers rely on manual adjustment of the tillage depth. Moreover, the consistency and stability of the tillage depth are difficult to guarantee. In this study, the automatic control method of tillage depth of a self-propelled electric tiller is investigated. A method of applying the fuzzy PID (Proportional Integral Derivative) control method to the tillage depth adjustment system of a tiller is also proposed to realize automatic control. The system uses the real-time detection of the resistance sensor and angle sensor. The controller runs the electronically controlled hydraulic system to adjust the force and position comprehensively. The fuzzy control algorithm is used in the operation error control to realize the double-parameter control of the tillage depth. The simulation and experimental verification of the system are conducted. Results show that the control system applying fuzzy PID can improve the soil breaking rate by 3% in the operation process based on reducing the stability variation of tillage depth by 24%. The control strategy can reach the set value of tillage depth quickly and accurately. It can also meet the requirement of tillage depth consistency during the operation. Keywords: fuzzy PID, self-propelled electric tiller, tillage depth, electro-controlled hydraulic system, comprehensive adjustment of force and position DOI: 10.25165/j.ijabe.20231604.8116 Citation: Xiao M H, Ma Y, Wang C, Chen J Y, Zhu Y J, Bartos P, et al. Design and experiment of fuzzy-PID based tillage depth control system for a self-propelled electric tiller. Int J Agric & Biol Eng, 2023; 16(4): 116-125.","PeriodicalId":13895,"journal":{"name":"International Journal of Agricultural and Biological Engineering","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135660292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of black soil compaction with driver-agricultural machinery-soil system under corn sowing with high-power tractor in Northeast China 大功率拖拉机玉米播种黑土驾驶员-农机-土壤系统压实分析
2区 农林科学
International Journal of Agricultural and Biological Engineering Pub Date : 2023-01-01 DOI: 10.25165/j.ijabe.20231604.7284
Xiao Yang, Zhiqiang Zhai, Weijie Guo, Wenjie Li, Minli Yang, Zhenghe Song
{"title":"Analysis of black soil compaction with driver-agricultural machinery-soil system under corn sowing with high-power tractor in Northeast China","authors":"Xiao Yang, Zhiqiang Zhai, Weijie Guo, Wenjie Li, Minli Yang, Zhenghe Song","doi":"10.25165/j.ijabe.20231604.7284","DOIUrl":"https://doi.org/10.25165/j.ijabe.20231604.7284","url":null,"abstract":"Soil compaction leads to crop yield reduction in Northeast of China. The interaction mechanism of driver-agricultural machinery-black soil is not clear. A comprehensive field experiment of 4 hm2 of maize seeding was carried out in Baiquan County Cooperative. The results showed that the average increase rates of soil compaction before and after sowing were 118.82% and 71.02%. The SEM showed that waist fatigue had the greatest impact on soil compaction, and the unit fatigue of waist caused 1.51 and 1.27 unit compactions to the soil at the depths of 10 cm and 20 cm. The neck, waist, arm and leg fatigue of drivers increased the surface soil compaction by 1.83, 1.76, 1.78 and 1.55 units, and the deep soil compaction by 1.65, 1.58, 1.60 and 1.40 units. The results can provide a reference for the integration of human factor efficiency and conservation tillage. Keywords: agriculture ergonomics, structural equation model, black soil compaction, sowing, high-power tractor DOI: 10.25165/j.ijabe.20231604.7284 Citation: Yang X, Zhai Z Q, Guo W J, Li W J, Yang M L, Song Z H. Analysis of black soil compaction with driver-agricultural machinery-soil system under corn sowing with high-power tractor in Northeast China. Int J Agric & Bio Eng, 2023; 16(4): 168-173","PeriodicalId":13895,"journal":{"name":"International Journal of Agricultural and Biological Engineering","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135660484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and test of the bilateral throwing soil-covering device for straw mulching machine in orchards 果园秸秆覆盖机双向抛覆装置的设计与试验
IF 2.4 2区 农林科学
International Journal of Agricultural and Biological Engineering Pub Date : 2023-01-01 DOI: 10.25165/j.ijabe.20231601.7010
Xinhua Zhu, Xianghe Gao, Xudong Li, Shaojie Xu
{"title":"Design and test of the bilateral throwing soil-covering device for straw mulching machine in orchards","authors":"Xinhua Zhu, Xianghe Gao, Xudong Li, Shaojie Xu","doi":"10.25165/j.ijabe.20231601.7010","DOIUrl":"https://doi.org/10.25165/j.ijabe.20231601.7010","url":null,"abstract":"","PeriodicalId":13895,"journal":{"name":"International Journal of Agricultural and Biological Engineering","volume":"54 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72426716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-class detection of cherry tomatoes using improved YOLOv4-Tiny 改进YOLOv4-Tiny对圣女果的多类检测
IF 2.4 2区 农林科学
International Journal of Agricultural and Biological Engineering Pub Date : 2023-01-01 DOI: 10.25165/j.ijabe.20231602.7744
Fu Zhang, Zijun Chen, Shaukat Ali, Ning Yang, Sanling Fu, Yakun Zhang
{"title":"Multi-class detection of cherry tomatoes using improved YOLOv4-Tiny","authors":"Fu Zhang, Zijun Chen, Shaukat Ali, Ning Yang, Sanling Fu, Yakun Zhang","doi":"10.25165/j.ijabe.20231602.7744","DOIUrl":"https://doi.org/10.25165/j.ijabe.20231602.7744","url":null,"abstract":": The rapid and accurate detection of cherry tomatoes is of great significance to realizing automatic picking by robots. However, so far, cherry tomatoes are detected as only one class for picking. Fruits occluded by branches or leaves are detected as pickable objects, which may cause damage to the plant or robot end-effector during picking. This study proposed the Feature Enhancement Network Block (FENB) based on YOLOv4-Tiny to solve the above problem. Firstly, according to the distribution characteristics and picking strategies of cherry tomatoes, cherry tomatoes were divided into four classes in the nighttime, and daytime included not occluded, occluded by branches, occluded by fruits, and occluded by leaves. Secondly, the CSPNet structure with the hybrid attention mechanism was used to design the FENB, which pays more attention to the effective features of different classes of cherry tomatoes while retaining the original features. Finally, the Feature Enhancement Network (FEN) was constructed based on the FENB to enhance the feature extraction ability and improve the detection accuracy of YOLOv4-Tiny. The experimental results show that under the confidence of 0.5, average precision (AP) of non-occluded, branch-occluded, fruit-occluded, and leaf-occluded fruit over the day test images were 95.86%, 92.59%, 89.66%, and 84.99%, respectively, which were 98.43%, 95.62%, 95.50%, and 89.33% on the night test images, respectively. The mean Average Precision (mAP) of four classes over the night test set was higher (94.72%) than that of the day (90.78%), which were both better than YOLOv4 and YOLOv4-Tiny. It cost 32.22 ms to process a 416×416 image on the GPU. The model size was 39.34 MB. Therefore, the proposed model can provide a practical and feasible method for the multi-class detection of cherry tomatoes.","PeriodicalId":13895,"journal":{"name":"International Journal of Agricultural and Biological Engineering","volume":"5 4","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72589477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Nitrogen use in double cropping soybean with non-fertilized winter oilseed crops 双季大豆与冬季不施肥油料作物氮素利用
IF 2.4 2区 农林科学
International Journal of Agricultural and Biological Engineering Pub Date : 2023-01-01 DOI: 10.25165/j.ijabe.20231602.7547
Ronghao Liu, Stephen Gregg, A. Garcia y Garcia
{"title":"Nitrogen use in double cropping soybean with non-fertilized winter oilseed crops","authors":"Ronghao Liu, Stephen Gregg, A. Garcia y Garcia","doi":"10.25165/j.ijabe.20231602.7547","DOIUrl":"https://doi.org/10.25165/j.ijabe.20231602.7547","url":null,"abstract":"","PeriodicalId":13895,"journal":{"name":"International Journal of Agricultural and Biological Engineering","volume":"48 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80167016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Downwash airflow field distribution characteristics and their effect on the spray field distribution of the DJI T30 six-rotor plant protection UAV 大疆T30六旋翼植保无人机下洗气流场分布特性及其对喷淋场分布的影响
IF 2.4 2区 农林科学
International Journal of Agricultural and Biological Engineering Pub Date : 2023-01-01 DOI: 10.25165/j.ijabe.20231602.8094
Haiyan Zhang, Sheng Wen, Chunling Chen, Q. Liu, Tongyu Xu, Shengde Chen, Y. Lan
{"title":"Downwash airflow field distribution characteristics and their effect on the spray field distribution of the DJI T30 six-rotor plant protection UAV","authors":"Haiyan Zhang, Sheng Wen, Chunling Chen, Q. Liu, Tongyu Xu, Shengde Chen, Y. Lan","doi":"10.25165/j.ijabe.20231602.8094","DOIUrl":"https://doi.org/10.25165/j.ijabe.20231602.8094","url":null,"abstract":": Spray characteristics are the fundamental factors that affect droplet transportation downward, deposition, and drift. The downwash airflow field of the Unmanned Aviation Vehicle (UAV) primarily influences droplet deposition and drift by changing the spray characteristics. This study focused mainly on the effect of the downwash airflow field of the UAV and nozzle position on the droplet spatial distribution and velocity distribution, which are two factors of spray characteristics. To study the abovementioned characteristics, computational fluid dynamics based on the lattice Boltzmann method (LBM) was used to simulate the downwash airflow field of the DJI T30 six-rotor plant protection UAV at different rotor rotational speeds (1000-1800 r/min). A particle image velocimetry system (PIV) was utilized to record the spray field with the downwash airflow field at different rotational speeds of rotors (0-1800 r/min) or different nozzle positions (0, 0.20 m, 0.35 m, and 0.50 m from the motor). The simulation and experimental results showed that the rotor downwash airflow field exhibited the ‘ dispersion-shrinkage-redispersion’ development rule. In the initial dispersion stage of rotor airflow, there were obvious high-vorticity and low-vorticity regions in the rotor downwash airflow field. Moreover, the low-vorticity region was primarily concentrated below the motor, and the high-vorticity region was mainly focused in the middle area of the rotors. Additionally, the Y -direction airflow velocity fluctuated at 0.4-1.2 m under the rotor. When the rotor airflow developed to 3.2 m below the rotor, the Y - direction airflow velocity showed a slight decrease. Above 3.2 m from the rotor, the Y -direction airflow velocity started to drastically decrease. Therefore, it is recommended that the DJI T30 plant protection UAV should not exceed 3.2 m in flight height during field spraying operations. The rotor downwash airflow field caused the nozzle atomization angle, droplet concentration, and spray field width to decrease while increasing the vortex scale in the spray field when the rotor system was activated. Moreover, the increase in rotor rotational speed promoted the abovementioned trend. When the nozzle was installed in various radial locations below the rotor, the droplet spatial distribution and velocity distribution were completely different. When the nozzle was installed directly below the motor, the droplet spatial distribution and velocity distribution were relatively symmetrical. When the nozzle was installed at 0.20 m and 0.35 m from the motor, the droplets clearly moved toward the right under the induction of stronger rotor vortices. This resulted in a higher droplet concentration in the right-half spray field. However, the droplet moved toward the left when the nozzle was installed in the rotor tip. For four nozzle positions, when the nozzle was installed at 0 or 0.20 m from the motor, the droplet average velocity was much higher. However, the droplet","PeriodicalId":13895,"journal":{"name":"International Journal of Agricultural and Biological Engineering","volume":"218 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80175732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信