{"title":"Pseudo-Plane Regularized Signed Distance Field for Neural Indoor Scene Reconstruction","authors":"Jing Li, Jinpeng Yu, Ruoyu Wang, Shenghua Gao","doi":"10.1007/s11263-024-02319-w","DOIUrl":"https://doi.org/10.1007/s11263-024-02319-w","url":null,"abstract":"<p>Given only a set of images, neural implicit surface representation has shown its capability in 3D surface reconstruction. However, as the nature of per-scene optimization is based on the volumetric rendering of color, previous neural implicit surface reconstruction methods usually fail in the low-textured regions, including floors, walls, etc., which commonly exist for indoor scenes. Being aware of the fact that these low-textured regions usually correspond to planes, without introducing additional ground-truth supervisory signals or making additional assumptions about the room layout, we propose to leverage a novel Pseudo-plane regularized Signed Distance Field (PPlaneSDF) for indoor scene reconstruction. Specifically, we consider adjacent pixels with similar colors to be on the same pseudo-planes. The plane parameters are then estimated on the fly during training by an efficient and effective two-step scheme. Then the signed distances of the points on the planes are regularized by the estimated plane parameters in the training phase. As the unsupervised plane segments are usually noisy and inaccurate, we propose to assign different weights to the sampled points on the plane in plane estimation as well as the regularization loss. The weights come by fusing the plane segments from different views. As the sampled rays in the planar regions are redundant, leading to inefficient training, we further propose a keypoint-guided rays sampling strategy that attends to the informative textured regions with large color variations, and the implicit network gets a better reconstruction, compared with the original uniform ray sampling strategy. Experiments show that our PPlaneSDF achieves competitive reconstruction performance in Manhattan scenes. Further, as we do not introduce any additional room layout assumption, our PPlaneSDF generalizes well to the reconstruction of non-Manhattan scenes.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"14 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142905137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yan Huang, Yan Huang, Zhang Zhang, Qiang Wu, Yi Zhong, Liang Wang
{"title":"CSFRNet: Integrating Clothing Status Awareness for Long-Term Person Re-identification","authors":"Yan Huang, Yan Huang, Zhang Zhang, Qiang Wu, Yi Zhong, Liang Wang","doi":"10.1007/s11263-024-02315-0","DOIUrl":"https://doi.org/10.1007/s11263-024-02315-0","url":null,"abstract":"<p>Addressing the dynamic nature of long-term person re-identification (LT-reID) amid varying clothing conditions necessitates a departure from conventional methods. Traditional LT-reID strategies, mainly biometrics-based and data adaptation-based, each have their pitfalls. The former falters in environments lacking high-quality biometric data, while the latter loses efficacy with minimal or subtle clothing changes. To overcome these obstacles, we propose the clothing status-aware feature regularization network (CSFRNet). This novel approach seamlessly incorporates clothing status awareness into the feature learning process, significantly enhancing the adaptability and accuracy of LT-reID systems where clothing can either change completely, partially, or not at all over time, without the need for explicit clothing labels. The versatility of our CSFRNet is showcased on diverse LT-reID benchmarks, including Celeb-reID, Celeb-reID-light, PRCC, DeepChange, and LTCC, marking a significant advancement in the field by addressing the real-world variability of clothing in LT-reID scenarios.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"48 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142901709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"AniClipart: Clipart Animation with Text-to-Video Priors","authors":"Ronghuan Wu, Wanchao Su, Kede Ma, Jing Liao","doi":"10.1007/s11263-024-02306-1","DOIUrl":"https://doi.org/10.1007/s11263-024-02306-1","url":null,"abstract":"<p>Clipart, a pre-made graphic art form, offers a convenient and efficient way of illustrating visual content. Traditional workflows to convert static clipart images into motion sequences are laborious and time-consuming, involving numerous intricate steps like rigging, key animation and in-betweening. Recent advancements in text-to-video generation hold great potential in resolving this problem. Nevertheless, direct application of text-to-video generation models often struggles to retain the visual identity of clipart images or generate cartoon-style motions, resulting in unsatisfactory animation outcomes. In this paper, we introduce AniClipart, a system that transforms static clipart images into high-quality motion sequences guided by text-to-video priors. To generate cartoon-style and smooth motion, we first define Bézier curves over keypoints of the clipart image as a form of motion regularization. We then align the motion trajectories of the keypoints with the provided text prompt by optimizing the Video Score Distillation Sampling (VSDS) loss, which encodes adequate knowledge of natural motion within a pretrained text-to-video diffusion model. With a differentiable As-Rigid-As-Possible shape deformation algorithm, our method can be end-to-end optimized while maintaining deformation rigidity. Experimental results show that the proposed AniClipart consistently outperforms existing image-to-video generation models, in terms of text-video alignment, visual identity preservation, and motion consistency. Furthermore, we showcase the versatility of AniClipart by adapting it to generate a broader array of animation formats, such as layered animation, which allows topological changes.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"20 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142888337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Combating Label Noise with a General Surrogate Model for Sample Selection","authors":"Chao Liang, Linchao Zhu, Humphrey Shi, Yi Yang","doi":"10.1007/s11263-024-02324-z","DOIUrl":"https://doi.org/10.1007/s11263-024-02324-z","url":null,"abstract":"<p>Modern deep learning systems are data-hungry. Learning with web data is one of the feasible solutions, but will introduce label noise inevitably, which can hinder the performance of deep neural networks. Sample selection is an effective way to deal with label noise. The key is to separate clean samples based on some criterion. Previous methods pay more attention to the small loss criterion where small-loss samples are regarded as clean ones. Nevertheless, such a strategy relies on the learning dynamics of each data instance. Some noisy samples are still memorized due to frequently occurring corrupted learning patterns. To tackle this problem, a training-free surrogate model is preferred, freeing from the effect of memorization. In this work, we propose to leverage the vision-language surrogate model CLIP to filter noisy samples automatically. CLIP brings external knowledge to facilitate the selection of clean samples with its ability of text-image alignment. Furthermore, a margin adaptive loss is designed to regularize the selection bias introduced by CLIP, providing robustness to label noise. We validate the effectiveness of our proposed method on both real-world and synthetic noisy datasets. Our method achieves significant improvement without CLIP involved during the inference stage.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"23 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142888938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring Homogeneous and Heterogeneous Consistent Label Associations for Unsupervised Visible-Infrared Person ReID","authors":"Lingfeng He, De Cheng, Nannan Wang, Xinbo Gao","doi":"10.1007/s11263-024-02322-1","DOIUrl":"https://doi.org/10.1007/s11263-024-02322-1","url":null,"abstract":"<p>Unsupervised visible-infrared person re-identification (USL-VI-ReID) endeavors to retrieve pedestrian images of the same identity from different modalities without annotations. While prior work focuses on establishing cross-modality pseudo-label associations to bridge the modality-gap, they ignore maintaining the instance-level homogeneous and heterogeneous consistency between the feature space and the pseudo-label space, resulting in coarse associations. In response, we introduce a Modality-Unified Label Transfer (MULT) module that simultaneously accounts for both homogeneous and heterogeneous fine-grained instance-level structures, yielding high-quality cross-modality label associations. It models both homogeneous and heterogeneous affinities, leveraging them to quantify the inconsistency between the pseudo-label space and the feature space, subsequently minimizing it. The proposed MULT ensures that the generated pseudo-labels maintain alignment across modalities while upholding structural consistency within intra-modality. Additionally, a straightforward plug-and-play Online Cross-memory Label Refinement (OCLR) module is proposed to further mitigate the side effects of noisy pseudo-labels while simultaneously aligning different modalities, coupled with an Alternative Modality-Invariant Representation Learning (AMIRL) framework. Experiments demonstrate that our proposed method outperforms existing state-of-the-art USL-VI-ReID methods, highlighting the superiority of our MULT in comparison to other cross-modality association methods. Code is available at https://github.com/FranklinLingfeng/code_for_MULT.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"25 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142886995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jinyi Wang, Zhaoyang Lyu, Ben Fei, Jiangchao Yao, Ya Zhang, Bo Dai, Dahua Lin, Ying He, Yanfeng Wang
{"title":"SLIDE: A Unified Mesh and Texture Generation Framework with Enhanced Geometric Control and Multi-view Consistency","authors":"Jinyi Wang, Zhaoyang Lyu, Ben Fei, Jiangchao Yao, Ya Zhang, Bo Dai, Dahua Lin, Ying He, Yanfeng Wang","doi":"10.1007/s11263-024-02326-x","DOIUrl":"https://doi.org/10.1007/s11263-024-02326-x","url":null,"abstract":"<p>The generation of textured mesh is crucial for computer graphics and virtual content creation. However, current generative models often struggle with challenges such as irregular mesh structures and inconsistencies in multi-view textures. In this study, we present a unified framework for both geometry generation and texture generation, utilizing a novel sparse latent point diffusion model that specifically addresses the geometric aspects of models. Our approach employs point clouds as an efficient intermediate representation, encoding them into sparse latent points with semantically meaningful features for precise geometric control. While the sparse latent points facilitate a high-level control over the geometry, shaping the overall structure and fine details of the meshes, this control does not extend to textures. To address this, we propose a separate texture generation process that integrates multi-view priors post-geometry generation, effectively resolving the issue of multi-view texture inconsistency. This process ensures the production of coherent and high-quality textures that complement the precisely generated meshes, thereby creating visually appealing and detailed models. Our framework distinctively separates the control mechanisms for geometry and texture, leading to significant improvements in the generation of complex, textured 3D content. Evaluations on the ShapeNet dataset for geometry and the Objaverse dataset for textures demonstrate that our model surpasses existing methods in terms of geometric quality, control, and the generation of coherent, high-quality textures.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"64 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142874200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chunyang Cheng, Tianyang Xu, Xiao-Jun Wu, Hui Li, Xi Li, Josef Kittler
{"title":"FusionBooster: A Unified Image Fusion Boosting Paradigm","authors":"Chunyang Cheng, Tianyang Xu, Xiao-Jun Wu, Hui Li, Xi Li, Josef Kittler","doi":"10.1007/s11263-024-02266-6","DOIUrl":"https://doi.org/10.1007/s11263-024-02266-6","url":null,"abstract":"<p>In recent years, numerous ideas have emerged for designing a mutually reinforcing mechanism or extra stages for the image fusion task, ignoring the inevitable gaps between different vision tasks and the computational burden. We argue that there is a scope to improve the fusion performance with the help of the FusionBooster, a model specifically designed for fusion tasks. In particular, our booster is based on the divide-and-conquer strategy controlled by an information probe. The booster is composed of three building blocks: the probe units, the booster layer, and the assembling module. Given the result produced by a backbone method, the probe units assess the fused image and divide the results according to their information content. This is instrumental in identifying missing information, as a step to its recovery. The recovery of the degraded components along with the fusion guidance are the role of the booster layer. Lastly, the assembling module is responsible for piecing these advanced components together to deliver the output. We use concise reconstruction loss functions in conjunction with lightweight autoencoder models to formulate the learning task, with marginal computational complexity increase. The experimental results obtained in various fusion missions, as well as downstream detection tasks, consistently demonstrate that the proposed FusionBooster significantly improves the performance. Our code will be publicly available at https://github.com/AWCXV/FusionBooster.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"24 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142874202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"LaVie: High-Quality Video Generation with Cascaded Latent Diffusion Models","authors":"Yaohui Wang, Xinyuan Chen, Xin Ma, Shangchen Zhou, Ziqi Huang, Yi Wang, Ceyuan Yang, Yinan He, Jiashuo Yu, Peiqing Yang, Yuwei Guo, Tianxing Wu, Chenyang Si, Yuming Jiang, Cunjian Chen, Chen Change Loy, Bo Dai, Dahua Lin, Yu Qiao, Ziwei Liu","doi":"10.1007/s11263-024-02295-1","DOIUrl":"https://doi.org/10.1007/s11263-024-02295-1","url":null,"abstract":"<p>This work aims to learn a high-quality text-to-video (T2V) generative model by leveraging a pre-trained text-to-image (T2I) model as a basis. It is a highly desirable yet challenging task to simultaneously (a) accomplish the synthesis of visually realistic and temporally coherent videos while (b) preserving the strong creative generation nature of the pre-trained T2I model. To this end, we propose <b>LaVie</b>, an integrated video generation framework that operates on cascaded video latent diffusion models, comprising a base T2V model, a temporal interpolation model, and a video super-resolution model. Our key insights are two-fold: (1) We reveal that the incorporation of simple temporal self-attentions, coupled with rotary positional encoding, adequately captures the temporal correlations inherent in video data. (2) Additionally, we validate that the process of joint image-video fine-tuning plays a pivotal role in producing high-quality and creative outcomes. To enhance the performance of LaVie, we contribute a comprehensive and diverse video dataset named <b>Vimeo25M</b>, consisting of 25 million text-video pairs that prioritize quality, diversity, and aesthetic appeal. Extensive experiments demonstrate that LaVie achieves state-of-the-art performance both quantitatively and qualitatively. Furthermore, we showcase the versatility of pre-trained LaVie models in various long video generation and personalized video synthesis applications. Project page: https://github.com/Vchitect/LaVie/.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"20 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142874201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"AutoStory: Generating Diverse Storytelling Images with Minimal Human Efforts","authors":"Wen Wang, Canyu Zhao, Hao Chen, Zhekai Chen, Kecheng Zheng, Chunhua Shen","doi":"10.1007/s11263-024-02309-y","DOIUrl":"https://doi.org/10.1007/s11263-024-02309-y","url":null,"abstract":"<p>Story visualization aims to generate a series of images that match the story described in texts, and it requires the generated images to satisfy high quality, alignment with the text description, and consistency in character identities. Given the complexity of story visualization, existing methods drastically simplify the problem by considering only a few specific characters and scenarios, or requiring the users to provide per-image control conditions such as sketches. However, these simplifications render these methods incompetent for real applications. To this end, we propose an automated story visualization system that can effectively generate diverse, high-quality, and consistent sets of story images, with minimal human interactions. Specifically, we utilize the comprehension and planning capabilities of large language models for layout planning, and then leverage large-scale text-to-image models to generate sophisticated story images based on the layout. We empirically find that sparse control conditions, such as bounding boxes, are suitable for layout planning, while dense control conditions, <i>e.g.</i>, sketches, and keypoints, are suitable for generating high-quality image content. To obtain the best of both worlds, we devise a dense condition generation module to transform simple bounding box layouts into sketch or keypoint control conditions for final image generation, which not only improves the image quality but also allows easy and intuitive user interactions. In addition, we propose a simple yet effective method to generate multi-view consistent character images, eliminating the reliance on human labor to collect or draw character images. This allows our method to obtain consistent story visualization even when only texts are provided as input. Both qualitative and quantitative experiments demonstrate the superiority of our method.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"32 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142874204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Noise-Resistant Multimodal Transformer for Emotion Recognition","authors":"Yuanyuan Liu, Haoyu Zhang, Yibing Zhan, Zijing Chen, Guanghao Yin, Lin Wei, Zhe Chen","doi":"10.1007/s11263-024-02304-3","DOIUrl":"https://doi.org/10.1007/s11263-024-02304-3","url":null,"abstract":"<p>Multimodal emotion recognition identifies human emotions from various data modalities like video, text, and audio. However, we found that this task can be easily affected by noisy information that does not contain useful semantics and may occur at different locations of a multimodal input sequence. To this end, we present a novel paradigm that attempts to extract noise-resistant features in its pipeline and introduces a noise-aware learning scheme to effectively improve the robustness of multimodal emotion understanding against noisy information. Our new pipeline, namely Noise-Resistant Multimodal Transformer (NORM-TR), mainly introduces a Noise-Resistant Generic Feature (NRGF) extractor and a multimodal fusion Transformer for the multimodal emotion recognition task. In particular, we make the NRGF extractor learn to provide a generic and disturbance-insensitive representation so that consistent and meaningful semantics can be obtained. Furthermore, we apply a multimodal fusion Transformer to incorporate Multimodal Features (MFs) of multimodal inputs (serving as the key and value) based on their relations to the NRGF (serving as the query). Therefore, the possible insensitive but useful information of NRGF could be complemented by MFs that contain more details, achieving more accurate emotion understanding while maintaining robustness against noises. To train the NORM-TR properly, our proposed noise-aware learning scheme complements normal emotion recognition losses by enhancing the learning against noises. Our learning scheme explicitly adds noises to either all the modalities or a specific modality at random locations of a multimodal input sequence. We correspondingly introduce two adversarial losses to encourage the NRGF extractor to learn to extract the NRGFs invariant to the added noises, thus facilitating the NORM-TR to achieve more favorable multimodal emotion recognition performance. In practice, extensive experiments can demonstrate the effectiveness of the NORM-TR and the noise-aware learning scheme for dealing with both explicitly added noisy information and the normal multimodal sequence with implicit noises. On several popular multimodal datasets (e.g., MOSI, MOSEI, IEMOCAP, and RML), our NORM-TR achieves state-of-the-art performance and outperforms existing methods by a large margin, which demonstrates that the ability to resist noisy information in multimodal input is important for effective emotion recognition.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"22 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142869955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}