面向多模态场景理解的部分-整体关系融合

IF 11.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yi Liu, Chengxin Li, Shoukun Xu, Jungong Han
{"title":"面向多模态场景理解的部分-整体关系融合","authors":"Yi Liu, Chengxin Li, Shoukun Xu, Jungong Han","doi":"10.1007/s11263-025-02393-8","DOIUrl":null,"url":null,"abstract":"<p>Multi-modal fusion has played a vital role in multi-modal scene understanding. Most existing methods focus on cross-modal fusion involving two modalities, often overlooking more complex multi-modal fusion, which is essential for real-world applications like autonomous driving, where visible, depth, event, LiDAR, etc., are used. Besides, few attempts for multi-modal fusion, e.g., simple concatenation, cross-modal attention, and token selection, cannot well dig into the intrinsic shared and specific details of multiple modalities. To tackle the challenge, in this paper, we propose a Part-Whole Relational Fusion (PWRF) framework. For the first time, this framework treats multi-modal fusion as part-whole relational fusion. It routes multiple individual part-level modalities to a fused whole-level modality using the part-whole relational routing ability of Capsule Networks (CapsNets). Through this part-whole routing, our PWRF generates modal-shared and modal-specific semantics from the whole-level modal capsules and the routing coefficients, respectively. On top of that, modal-shared and modal-specific details can be employed to solve the issue of multi-modal scene understanding, including synthetic multi-modal segmentation and visible-depth-thermal salient object detection in this paper. Experiments on several datasets demonstrate the superiority of the proposed PWRF framework for multi-modal scene understanding. The source code has been released on https://github.com/liuyi1989/PWRF.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"33 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Part-Whole Relational Fusion Towards Multi-Modal Scene Understanding\",\"authors\":\"Yi Liu, Chengxin Li, Shoukun Xu, Jungong Han\",\"doi\":\"10.1007/s11263-025-02393-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Multi-modal fusion has played a vital role in multi-modal scene understanding. Most existing methods focus on cross-modal fusion involving two modalities, often overlooking more complex multi-modal fusion, which is essential for real-world applications like autonomous driving, where visible, depth, event, LiDAR, etc., are used. Besides, few attempts for multi-modal fusion, e.g., simple concatenation, cross-modal attention, and token selection, cannot well dig into the intrinsic shared and specific details of multiple modalities. To tackle the challenge, in this paper, we propose a Part-Whole Relational Fusion (PWRF) framework. For the first time, this framework treats multi-modal fusion as part-whole relational fusion. It routes multiple individual part-level modalities to a fused whole-level modality using the part-whole relational routing ability of Capsule Networks (CapsNets). Through this part-whole routing, our PWRF generates modal-shared and modal-specific semantics from the whole-level modal capsules and the routing coefficients, respectively. On top of that, modal-shared and modal-specific details can be employed to solve the issue of multi-modal scene understanding, including synthetic multi-modal segmentation and visible-depth-thermal salient object detection in this paper. Experiments on several datasets demonstrate the superiority of the proposed PWRF framework for multi-modal scene understanding. The source code has been released on https://github.com/liuyi1989/PWRF.</p>\",\"PeriodicalId\":13752,\"journal\":{\"name\":\"International Journal of Computer Vision\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11263-025-02393-8\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-025-02393-8","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

多模态融合在多模态场景理解中起着至关重要的作用。大多数现有方法都侧重于涉及两种模态的跨模态融合,通常忽略了更复杂的多模态融合,这对于自动驾驶等实际应用至关重要,在这些应用中使用了可见、深度、事件、激光雷达等。此外,对多模态融合的尝试很少,如简单的连接、跨模态注意和标记选择,不能很好地挖掘多模态内在的共享和特定细节。为了解决这一问题,本文提出了一个局部-整体关系融合(PWRF)框架。该框架首次将多模态融合视为部分-整体关系融合。它利用胶囊网络(capnet)的部分-整体关系路由能力,将多个单独的部分级模式路由到融合的整体级模式。通过这种部分-整体路由,我们的PWRF分别从整体级模态胶囊和路由系数中生成模态共享和模态特定的语义。在此基础上,可以利用模态共享和模态特定细节来解决多模态场景理解问题,包括本文的合成多模态分割和可见深度-热显著目标检测。在多个数据集上的实验证明了PWRF框架在多模态场景理解方面的优越性。源代码已在https://github.com/liuyi1989/PWRF上发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Part-Whole Relational Fusion Towards Multi-Modal Scene Understanding

Multi-modal fusion has played a vital role in multi-modal scene understanding. Most existing methods focus on cross-modal fusion involving two modalities, often overlooking more complex multi-modal fusion, which is essential for real-world applications like autonomous driving, where visible, depth, event, LiDAR, etc., are used. Besides, few attempts for multi-modal fusion, e.g., simple concatenation, cross-modal attention, and token selection, cannot well dig into the intrinsic shared and specific details of multiple modalities. To tackle the challenge, in this paper, we propose a Part-Whole Relational Fusion (PWRF) framework. For the first time, this framework treats multi-modal fusion as part-whole relational fusion. It routes multiple individual part-level modalities to a fused whole-level modality using the part-whole relational routing ability of Capsule Networks (CapsNets). Through this part-whole routing, our PWRF generates modal-shared and modal-specific semantics from the whole-level modal capsules and the routing coefficients, respectively. On top of that, modal-shared and modal-specific details can be employed to solve the issue of multi-modal scene understanding, including synthetic multi-modal segmentation and visible-depth-thermal salient object detection in this paper. Experiments on several datasets demonstrate the superiority of the proposed PWRF framework for multi-modal scene understanding. The source code has been released on https://github.com/liuyi1989/PWRF.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computer Vision
International Journal of Computer Vision 工程技术-计算机:人工智能
CiteScore
29.80
自引率
2.10%
发文量
163
审稿时长
6 months
期刊介绍: The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs. Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision. Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community. Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas. In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives. The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research. Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信