Integrative Organismal Biology最新文献

筛选
英文 中文
Roles of Mono- and Bi-articular Muscles in Human Limbs: Two-joint Link Model and Applications. 单关节和双关节肌肉在人体肢体中的作用:双关节连接模型及其应用。
IF 1.5 4区 生物学
Integrative Organismal Biology Pub Date : 2022-11-22 eCollection Date: 2022-01-01 DOI: 10.1093/iob/obac042
Tsutomu Miyake, Masataka Okabe
{"title":"Roles of Mono- and Bi-articular Muscles in Human Limbs: Two-joint Link Model and Applications.","authors":"Tsutomu Miyake,&nbsp;Masataka Okabe","doi":"10.1093/iob/obac042","DOIUrl":"https://doi.org/10.1093/iob/obac042","url":null,"abstract":"<p><p>We review the two-joint link model of mono- and bi-articular muscles in the human branchium and thigh for applications related to biomechanical studies of tetrapod locomotion including gait analyses of humans and non-human tetrapods. This model has been proposed to elucidate functional roles of human mono- and bi-articular muscles by analyzing human limb movements biomechanically and testing the results both theoretically and mechanically using robotic arms and legs. However, the model has not yet been applied to biomechanical studies of tetrapod locomotion, in part since it was established based mainly on mechanical engineering analyses and because it has been applied mostly to robotics, fields of mechanical engineering, and to rehabilitation sciences. When we discovered and published the identical pairs of mono- and bi-articular muscles in pectoral fins of the coelacanth fish <i>Latimeria chalumnae</i> to those of humans, we recognized the significant roles of mono- and bi-articular muscles in evolution of tetrapod limbs from paired fins and tetrapod limb locomotion. Therefore, we have been reviewing the theoretical background and mechanical parameters of the model in order to analyze functional roles of mono- and bi-articular muscles in tetrapod limb locomotion. Herein, we present re-defined biological parameters including 3 axes among 3 joints of forelimbs or hindlimbs that the model has formulated and provide biological and analytical tools and examples to facilitate applicable power of the model to our on-going gait analyses of humans and tetrapods.</p>","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9681132/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40710922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
XROMM Analysis of Feeding Mechanics in Toads: Interactions of the Tongue, Hyoid, and Pectoral Girdle 蟾蜍摄食力学的xrom分析:舌、舌骨和胸带的相互作用
IF 1.5 4区 生物学
Integrative Organismal Biology Pub Date : 2022-10-22 DOI: 10.1093/iob/obac045
R. Keeffe, R. Blob, D. Blackburn, C. Mayerl
{"title":"XROMM Analysis of Feeding Mechanics in Toads: Interactions of the Tongue, Hyoid, and Pectoral Girdle","authors":"R. Keeffe, R. Blob, D. Blackburn, C. Mayerl","doi":"10.1093/iob/obac045","DOIUrl":"https://doi.org/10.1093/iob/obac045","url":null,"abstract":"Synopsis During feeding in many terrestrial vertebrates, the tongue acts in concert with the hyoid and pectoral girdle. In frogs, these three elements are interconnected by musculature. While the feeding mechanics of the anuran tongue are well-studied, little is known of how the motions of the tongue relate to the movements of the skeleton or how buccal structures move following closure of the mouth. Although features such as the pectoral girdle and hyoid are not externally visible in frogs, their motions can be tracked in X-ray video. We used XROMM (X-ray Reconstruction of Moving Morphology) techniques to track the 3D movements of the tongue, hyoid apparatus, pectoral girdle, skull, and jaw during the feeding cycle of the cane toad, Rhinella marina. We show how the movements of these elements are integrated during tongue protrusion and prey capture, as well as during prey transport, swallowing, and recovery. Our findings suggest that the hyoid apparatus is important both for prey manipulation and swallowing. The tongue consistently stretches posterior to the skull during swallowing, often more than it stretches during protrusion to reach the prey. Feeding kinematics are similar between individuals, and the kinematics of unsuccessful strikes generally resemble those of successful strikes. Our data also provide a new perspective on the potential role of the pectoral girdle, an element with a predominant locomotor function, during feeding events. This work raises new questions about the evolution of feeding in frogs, as well as how the diversity of pectoral and buccal anatomy observed across anurans may influence feeding kinematics.","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47751971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Bone Density Variation in Rattails (Macrouridae, Gadiformes): Buoyancy, Depth, Body Size, and Feeding. 尾鼠的骨密度变化:浮力、深度、体型和摄食。
IF 1.5 4区 生物学
Integrative Organismal Biology Pub Date : 2022-10-16 eCollection Date: 2022-01-01 DOI: 10.1093/iob/obac044
Rene P Martin, Abigail S Dias, Adam P Summers, Mackenzie E Gerringer
{"title":"Bone Density Variation in Rattails (<i>Macrouridae, Gadiformes</i>): Buoyancy, Depth, Body Size, and Feeding.","authors":"Rene P Martin,&nbsp;Abigail S Dias,&nbsp;Adam P Summers,&nbsp;Mackenzie E Gerringer","doi":"10.1093/iob/obac044","DOIUrl":"https://doi.org/10.1093/iob/obac044","url":null,"abstract":"<p><p>Extreme abiotic factors in deep-sea environments, such as near-freezing temperatures, low light, and high hydrostatic pressure, drive the evolution of adaptations that allow organisms to survive under these conditions. Pelagic and benthopelagic fishes that have invaded the deep sea face physiological challenges from increased compression of gasses at depth, which limits the use of gas cavities as a buoyancy aid. One adaptation observed in deep-sea fishes to increase buoyancy is a decrease of high-density tissues. In this study, we analyze mineralization of high-density skeletal tissue in rattails (family Macrouridae), a group of widespread benthopelagic fishes that occur from surface waters to greater than 7000 m depth. We test the hypothesis that rattail species decrease bone density with increasing habitat depth as an adaptation to maintaining buoyancy while living under high hydrostatic pressures. We performed micro-computed tomography (micro-CT) scans on 15 species and 20 specimens of rattails and included two standards of known hydroxyapatite concentration (phantoms) to approximate voxel brightness to bone density. Bone density was compared across four bones (eleventh vertebra, lower jaw, pelvic girdle, and first dorsal-fin pterygiophore). On average, the lower jaw was significantly denser than the other bones. We found no correlation between bone density and depth or between bone density and phylogenetic relationships. Instead, we observed that bone density increases with increasing specimen length within and between species. This study adds to the growing body of work that suggests bone density can increase with growth in fishes, and that bone density does not vary in a straightforward way with depth.</p>","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9652093/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40490056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Sniffing out Stingray Noses: The Functional Morphology of Batoid Olfaction. 嗅出黄貂鱼的鼻子:蝙蝠体嗅觉的功能形态学。
IF 1.5 4区 生物学
Integrative Organismal Biology Pub Date : 2022-10-10 eCollection Date: 2022-01-01 DOI: 10.1093/iob/obac043
K M Rutledge
{"title":"Sniffing out Stingray Noses: The Functional Morphology of Batoid Olfaction.","authors":"K M Rutledge","doi":"10.1093/iob/obac043","DOIUrl":"https://doi.org/10.1093/iob/obac043","url":null,"abstract":"<p><p>Batoid fishes (rays, skates, sawfishes, and guitarfishes) are macrosmatic, meaning they rely on their sense of smell as one of the primary senses for survival and reproduction. Olfaction is important for long-distance tracking and navigation, predator and prey recognition, and conspecific signaling. However, the mechanisms by which batoids harness odorants is unknown. Without a direct pump-like system, it is hypothesized that batoids irrigate their nostrils via one or a combination of the following: the motion pump, buccopharyngeal pump, pressure (ex. pitot-like mechanism), or a shearing force (ex. viscous entrainment). These mechanisms rely on the size, shape, and position of the nostrils with respect to the head and to each other. Batoids are united as a group by their dorsoventrally compressed body plans, with nostrils on the ventral side of their body. This position presents several challenges for odor capture and likely limits the effectivity of the motion pump. Batoid fishes display an expansive nasal morphology, with inlet nostrils ranging from thin, vertical slits to wide, horizontal ovals to protruding, tube-like funnels, and more. In this paper, a morphometric model is developed to quantify the vast diversity in batoid nose shapes, sizes, and positions on the head in an ecological and functional framework. Specifically, swimming mode, lifestyle, habitat, and diet are examined for correlations with observed nasal morphotypes. Morphometric measurements were taken on all 4 orders present in Batoidea to broadly encompass batoid nasal diversity (Rhinopristiformes 4/5 families; Rajiformes 2/4 families; Torpediniformes 4/4 families; Myliobatiformes 8/11 families). All batoid external nasal diversity was found to be categorized into 5 major morphological groups and were termed: flush nare [circle, comma, intermediate], open nare, and protruding nare. Several morphometric traits remained significant when accounting for shared ancestry, including the position and angle of the nostril on the head, the width of the inlet hole, and the spacing of the nostrils from each other. These measurements were found to be closely correlated and statistically significant with the swimming mode of the animal. This study provides the first crucial step in understanding batoid olfaction, by understanding the diversity of the morphology of the system. Because odor capture is a strictly hydrodynamic process, it may be that factors relating more directly to the fluid dynamics (i.e., swimming mode, velocity, Reynolds number) may be more important in shaping the evolution of the diversity of batoid noses than other ecological factors like habitat and diet.</p>","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9633280/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40682837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heat-Induced Hatching of Red-Eyed Treefrog Embryos: Hydration and Clutch Structure Increase Behavioral Thermal Tolerance. 红眼树蛙胚胎热诱导孵化:水合作用和卵窝结构增加行为耐热性。
IF 1.5 4区 生物学
Integrative Organismal Biology Pub Date : 2022-09-28 eCollection Date: 2022-01-01 DOI: 10.1093/iob/obac041
Estefany Caroline Guevara-Molina, Fernando Ribeiro Gomes, Karen M Warkentin
{"title":"Heat-Induced Hatching of Red-Eyed Treefrog Embryos: Hydration and Clutch Structure Increase Behavioral Thermal Tolerance.","authors":"Estefany Caroline Guevara-Molina,&nbsp;Fernando Ribeiro Gomes,&nbsp;Karen M Warkentin","doi":"10.1093/iob/obac041","DOIUrl":"https://doi.org/10.1093/iob/obac041","url":null,"abstract":"<p><p>Climate change is increasing both environmental temperatures and droughts. Many ectotherms respond behaviorally to heat, thereby avoiding damage from extreme temperatures. Within species, thermal tolerance varies with factors such as hydration as well as ontogenetic stage. Many tropical anurans lay terrestrial eggs, relying on environmental moisture for embryonic development. These eggs are vulnerable to dehydration, and embryos of some species can hatch prematurely to escape from drying eggs. Warmer temperatures can accelerate development and thus hatching, but excess heat can kill embryos. Thus, we hypothesize that embryos may show a behavioral thermal tolerance limit, hatching prematurely to avoid potentially lethal warming. If so, because warming and drying are often associated, we hypothesize this limit, measurable as a voluntary thermal maximum, may depend on hydration. We manipulated the hydration of the terrestrial eggs of <i>Agalychnis callidryas</i>, in intact clutches and egg-groups isolated from clutch jelly, then warmed them to assess if embryos hatch early as a behavioral response to high temperatures and whether their thermal tolerance varies with hydration or surrounding structure. We discovered that heating induces hatching; these embryos show a behavioral escape-hatching response that enables them to avoid potentially lethal warming. Hydrated eggs and clutches lost more water and warmed more slowly than dehydrated ones, indicating that hydration buffers embryos from environmental warming via evaporative cooling. Embryos in hydrated clutches tolerated greater warming before hatching and suffered higher mortality, suggesting their behavioral Thermal Safety Margin is small. In contrast, lower thermal tolerance protected dry embryos, and those isolated from clutch jelly, from lethal warming. Heat-induced hatching offers a convenient behavioral assay for the thermal tolerance of terrestrial anuran embryos and the interactive effects of warming and dehydration at an early life stage. This work expands the set of threats against which embryos use hatching in self-defense, creating new opportunities for comparative studies of thermal tolerance as well as integrative studies of self-defense mechanisms at the egg stage.</p>","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9555205/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33518500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Intestinal Microbiome Richness of Coral Reef Damselfishes (Actinopterygii: Pomacentridae). 珊瑚礁豆娘鱼肠道微生物群落丰富度(放线父母亲科:豆娘鱼科)。
IF 1.5 4区 生物学
Integrative Organismal Biology Pub Date : 2022-09-16 eCollection Date: 2022-01-01 DOI: 10.1093/iob/obac026
Christopher R J Kavazos, Francesco Ricci, William Leggat, Jordan M Casey, J Howard Choat, Tracy D Ainsworth
{"title":"Intestinal Microbiome Richness of Coral Reef Damselfishes (<i>Actinopterygii: Pomacentridae</i>).","authors":"Christopher R J Kavazos,&nbsp;Francesco Ricci,&nbsp;William Leggat,&nbsp;Jordan M Casey,&nbsp;J Howard Choat,&nbsp;Tracy D Ainsworth","doi":"10.1093/iob/obac026","DOIUrl":"https://doi.org/10.1093/iob/obac026","url":null,"abstract":"<p><p>Fish gastro-intestinal system harbors diverse microbiomes that affect the host's digestion, nutrition, and immunity. Despite the great taxonomic diversity of fish, little is understood about fish microbiome and the factors that determine its structure and composition. Damselfish are important coral reef species that play pivotal roles in determining algae and coral population structures of reefs. Broadly, damselfish belong to either of two trophic guilds based on whether they are planktivorous or algae-farming. In this study, we used 16S rRNA gene sequencing to investigate the intestinal microbiome of 5 planktivorous and 5 algae-farming damselfish species (<i>Pomacentridae</i>) from the Great Barrier Reef. We detected <i>Gammaproteobacteria</i> ASVs belonging to the genus <i>Actinobacillus</i> in 80% of sampled individuals across the 2 trophic guilds, thus, bacteria in this genus can be considered possible core members of pomacentrid microbiomes. Algae-farming damselfish had greater bacterial alpha-diversity, a more diverse core microbiome and shared 35 ± 22 ASVs, whereas planktivorous species shared 7 ± 3 ASVs. Our data also highlight differences in microbiomes associated with both trophic guilds. For instance, algae-farming damselfish were enriched in <i>Pasteurellaceae</i>, whilst planktivorous damselfish in <i>Vibrionaceae</i>. Finally, we show shifts in bacterial community composition along the intestines. ASVs associated with the classes <i>Bacteroidia, Clostridia</i>, and <i>Mollicutes</i> bacteria were predominant in the anterior intestinal regions while <i>Gammaproteobacteria</i> abundance was higher in the stomach. Our results suggest that the richness of the intestinal bacterial communities of damselfish reflects host species diet and trophic guild.</p>","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9486986/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33469783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Abdominal Movements in Insect Flight Reshape the Role of Non-Aerodynamic Structures for Flight Maneuverability I: Model Predictive Control for Flower Tracking. 昆虫飞行中的腹部运动重塑非气动结构对飞行机动性的作用I:花朵跟踪的模型预测控制。
IF 1.5 4区 生物学
Integrative Organismal Biology Pub Date : 2022-09-16 eCollection Date: 2022-01-01 DOI: 10.1093/iob/obac039
Jorge Bustamante, Mahad Ahmed, Tanvi Deora, Brian Fabien, Thomas L Daniel
{"title":"Abdominal Movements in Insect Flight Reshape the Role of Non-Aerodynamic Structures for Flight Maneuverability I: Model Predictive Control for Flower Tracking.","authors":"Jorge Bustamante,&nbsp;Mahad Ahmed,&nbsp;Tanvi Deora,&nbsp;Brian Fabien,&nbsp;Thomas L Daniel","doi":"10.1093/iob/obac039","DOIUrl":"https://doi.org/10.1093/iob/obac039","url":null,"abstract":"<p><p>Research on insect flight control has focused primarily on the role of wings. Yet abdominal deflections during flight can potentially influence the dynamics of flight. This paper assesses the role of airframe deformations in flight, and asks to what extent the abdomen contributes to flight maneuverability. To address this, we use a combination of both a Model Predictive Control (MPC)-inspired computational inertial dynamics model, and free flight experiments in the hawkmoth, <i>Manduca sexta</i>. We explored both underactuated (<i>i.e.</i>, number of outputs are greater than the number of inputs) and fully actuated (equal number of outputs and inputs) systems. Using metrics such as the non-dimensionalized tracking error and cost of transport to evaluate flight performance of the inertial dynamics model, we show that fully actuated simulations minimized the tracking error and cost of transport. Additionally, we tested the effect of restricted abdomen movement on free flight in live hawkmoths by fixing a carbon fiber rod over the thoracic-abdomen joint. Moths with a restricted abdomen performed worse than sham treatment moths. This study finds that abdominal motions contribute to flight control and maneuverability. Such motions of non-aerodynamic structures, found in all flying taxa, can inform the development of multi-actuated micro air vehicles.</p>","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9555208/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33518060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Corn Snakes Show Consistent Sarcomere Length Ranges Across Muscle Groups and Ontogeny. 玉米蛇在肌肉群和个体发育中显示一致的肌节长度范围。
IF 1.5 4区 生物学
Integrative Organismal Biology Pub Date : 2022-09-08 eCollection Date: 2022-01-01 DOI: 10.1093/iob/obac040
Derek J Jurestovsky, Jessica L Tingle, Henry C Astley
{"title":"Corn Snakes Show Consistent Sarcomere Length Ranges Across Muscle Groups and Ontogeny.","authors":"Derek J Jurestovsky,&nbsp;Jessica L Tingle,&nbsp;Henry C Astley","doi":"10.1093/iob/obac040","DOIUrl":"https://doi.org/10.1093/iob/obac040","url":null,"abstract":"<p><p>The force-generating capacity of muscle depends upon many factors including the actin-myosin filament overlap due to the relative length of the sarcomere. Consequently, the force output of a muscle may vary throughout its range of motion, and the body posture allowing maximum force generation may differ even in otherwise similar species. We hypothesized that corn snakes would show an ontogenetic shift in sarcomere length range from being centered on the plateau of the length-tension curve in small individuals to being on the descending limb in adults. Sarcomere lengths across the plateau would be advantageous for locomotion, while the descending limb would be advantageous for constriction due to the increase in force as the coil tightens around the prey. To test this hypothesis, we collected sarcomere lengths from freshly euthanized corn snakes, preserving segments in straight and maximally curved postures, and quantifying sarcomere length via light microscopy. We dissected 7 muscles (spinalis, semispinalis, multifidus, longissimus dorsi, iliocostalis (dorsal and ventral), and levator costae) in an ontogenetic series of corn snakes (mass = 80-335 g) at multiple regions along the body (anterior, middle, and posterior). Our data shows all of the muscles analyzed are on the descending limb of the length-tension curve at rest across all masses, regions, and muscles analyzed, with muscles shortening onto or past the plateau when flexed. While these results are consistent with being advantageous for constriction at all sizes, there could also be unknown benefits of this sarcomere arrangement for locomotion or striking.</p>","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9492312/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33484734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Fast and Furious: Energetic Tradeoffs and Scaling of High-Speed Foraging in Rorqual Whales. 速度与激情:罗奎尔鲸高速觅食的能量权衡和缩放。
IF 1.5 4区 生物学
Integrative Organismal Biology Pub Date : 2022-08-27 eCollection Date: 2022-01-01 DOI: 10.1093/iob/obac038
William T Gough, David E Cade, Max F Czapanskiy, Jean Potvin, Frank E Fish, Shirel R Kahane-Rapport, Matthew S Savoca, K C Bierlich, David W Johnston, Ari S Friedlaender, Andy Szabo, Lars Bejder, Jeremy A Goldbogen
{"title":"Fast and Furious: Energetic Tradeoffs and Scaling of High-Speed Foraging in Rorqual Whales.","authors":"William T Gough,&nbsp;David E Cade,&nbsp;Max F Czapanskiy,&nbsp;Jean Potvin,&nbsp;Frank E Fish,&nbsp;Shirel R Kahane-Rapport,&nbsp;Matthew S Savoca,&nbsp;K C Bierlich,&nbsp;David W Johnston,&nbsp;Ari S Friedlaender,&nbsp;Andy Szabo,&nbsp;Lars Bejder,&nbsp;Jeremy A Goldbogen","doi":"10.1093/iob/obac038","DOIUrl":"https://doi.org/10.1093/iob/obac038","url":null,"abstract":"<p><p>Although gigantic body size and obligate filter feeding mechanisms have evolved in multiple vertebrate lineages (mammals and fishes), intermittent ram (lunge) filter feeding is unique to a specific family of baleen whales: rorquals. Lunge feeding is a high cost, high benefit feeding mechanism that requires the integration of unsteady locomotion (i.e., accelerations and maneuvers); the impact of scale on the biomechanics and energetics of this foraging mode continues to be the subject of intense study. The goal of our investigation was to use a combination of multi-sensor tags paired with UAS footage to determine the impact of morphometrics such as body size on kinematic lunging parameters such as fluking timing, maximum lunging speed, and deceleration during the engulfment period for a range of species from minke to blue whales. Our results show that, in the case of krill-feeding lunges and regardless of size, animals exhibit a skewed gradient between powered and fully unpowered engulfment, with fluking generally ending at the point of both the maximum lunging speed and mouth opening. In all cases, the small amounts of propulsive thrust generated by the tail were unable to overcome the high drag forces experienced during engulfment. Assuming this thrust to be minimal, we predicted the minimum speed of lunging across scale. To minimize the energetic cost of lunge feeding, hydrodynamic theory predicts slower lunge feeding speeds regardless of body size, with a lower boundary set by the ability of the prey to avoid capture. We used empirical data to test this theory and instead found that maximum foraging speeds remain constant and high (∼4 m s<sup>-1</sup>) across body size, even as higher speeds result in lower foraging efficiency. Regardless, we found an increasing relationship between body size and this foraging efficiency, estimated as the ratio of energetic gain from prey to energetic cost. This trend held across timescales ranging from a single lunge to a single day and suggests that larger whales are capturing more prey-and more energy-at a lower cost.</p>","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9475666/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40370645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Scaling Relationships of Maximal Gape in Two Species of Large Invasive Snakes, Brown Treesnakes and Burmese Pythons, and Implications for Maximal Prey Size. 两种大型入侵蛇类--棕色树蛇和缅甸蟒蛇--最大蛇口的比例关系以及对最大猎物大小的影响。
IF 2.2 4区 生物学
Integrative Organismal Biology Pub Date : 2022-08-25 eCollection Date: 2022-01-01 DOI: 10.1093/iob/obac033
Bruce C Jayne, Abigail L Bamberger, Douglas R Mader, Ian A Bartoszek
{"title":"Scaling Relationships of Maximal Gape in Two Species of Large Invasive Snakes, Brown Treesnakes and Burmese Pythons, and Implications for Maximal Prey Size.","authors":"Bruce C Jayne, Abigail L Bamberger, Douglas R Mader, Ian A Bartoszek","doi":"10.1093/iob/obac033","DOIUrl":"10.1093/iob/obac033","url":null,"abstract":"<p><p>Snakes are a phylogenetically diverse (> 3500 species) clade of gape-limited predators that consume diverse prey and have considerable ontogenetic and interspecific variation in size, but empirical data on maximal gape are very limited. To test how overall size predicts gape, we quantified the scaling relationships between maximal gape, overall size, and several cranial dimensions for a wide range of sizes (mass 8-64,100 g) for two large, invasive snake species: Burmese pythons (<i>Python molorus bivittatus</i>) and brown treesnakes (<i>Boiga irregularis</i>). Although skull size scaled with negative allometry relative to overall size, isometry and positive allometry commonly occurred for other measurements. For similar snout-vent lengths (SVL), the maximal gape areas of Burmese pythons were approximately 4-6 times greater than those of brown treesnakes, mainly as a result of having a significantly larger relative contribution to gape by the intermandibular soft tissues (43% vs. 17%). In both snake species and for all types of prey, the scaling relationships predicted that relative prey mass (RPM) at maximal gape decreased precipitously with increased overall snake size. For a given SVL or mass, the predicted maximal values of RPM of the Burmese pythons exceeded those of brown treesnakes for all prey types, and predicted values of RPM were usually least for chickens, greatest for limbed reptiles and intermediate for mammals. The pythons we studied are noteworthy for having large overall size and gape that is large even after correcting for overall size, both of which could facilitate some large individuals (SVL = 5 m) exploiting very large vertebrate prey (e.g., deer > 50 kg). Although brown treesnakes had longer quadrate bones, Burmese pythons had larger absolute and larger relative gape as a combined result of larger overall size, larger relative head size, and most importantly, greater stretch of the soft tissues.</p>","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9409080/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33443591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信