M Mangiacotti, S Baeckens, M Fumagalli, J Martín, S Scali, R Sacchi
{"title":"Protein-lipid Association in Lizard Chemical Signals.","authors":"M Mangiacotti, S Baeckens, M Fumagalli, J Martín, S Scali, R Sacchi","doi":"10.1093/iob/obad016","DOIUrl":"https://doi.org/10.1093/iob/obad016","url":null,"abstract":"<p><p>Chemical communication in terrestrial vertebrates is often built on complex blends, where semiochemical and structural compounds may form an integrated functional unit. In lizards, many species have specialized epidermal glands whose secretions are waxy, homogeneous blends of lipids and proteins, both active in communication. The intimate co-occurrence of such compounds allows us to hypothesize that they should undergo a certain degree of covariation, considering both their semiochemical role and the support-to-lipid function hypothesized for the protein fraction. In order to assess the occurrence and level of protein-lipid covariation, we compared the composition and complexity of the two fractions in the femoral gland secretions of 36 lizard species, combining phylogenetically-informed analysis with tandem mass spectrometry. We found the composition and complexity of the two fractions to be strongly correlated. The composition of the protein fraction was mostly influenced by the relative proportion of cholestanol, provitamin D<sub>3</sub>, stigmasterol, and tocopherol, while the complexity of the protein pattern increased with that of lipids. Additionally, two identified proteins (carbonic anhydrase and protein disulfide isomerase) increased their concentration as provitamin D<sub>3</sub> became more abundant. Although our approach does not allow us to decrypt the functional relations between the proteinaceous and lipid components, nor under the semiochemical or structural hypothesis, the finding that the proteins involved in this association were enzymes opens up to new perspectives about protein role: They may confer dynamic properties to the blend, making it able to compensate predictable variation of the environmental conditions. This may expand the view about proteins in the support-to-lipid hypothesis, from being a passive and inert component of the secretions to become an active and dynamic one, thus providing cues for future research.</p>","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10205002/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9526481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L Aibekova, R A Keller, J Katzke, D M Allman, F Hita-Garcia, D Labonte, A Narendra, E P Economo
{"title":"Parallel And Divergent Morphological Adaptations Underlying The Evolution of Jumping Ability in Ants.","authors":"L Aibekova, R A Keller, J Katzke, D M Allman, F Hita-Garcia, D Labonte, A Narendra, E P Economo","doi":"10.1093/iob/obad026","DOIUrl":"https://doi.org/10.1093/iob/obad026","url":null,"abstract":"<p><p>Jumping is a rapid locomotory mode widespread in terrestrial organisms. However, it is a rare specialization in ants. Forward jumping has been reported within four distantly related ant genera: <i>Gigantiops, Harpegnathos, Myrmecia</i>, and <i>Odontomachus</i>. The temporal engagement of legs/body parts during jump, however, varies across these genera. It is unknown what morphological adaptations underlie such behaviors and whether jumping in ants is solely driven directly by muscle contraction or additionally relies on elastic recoil mechanism. We investigated the morphological adaptations for jumping behavior by comparing differences in the locomotory musculature between jumping and non-jumping relatives using X-ray micro-CT and 3D morphometrics. We found that the size-specific volumes of the trochanter depressor muscle (<i>scm6</i>) of the middle and hind legs are 3-5 times larger in jumping ants, and that one coxal remotor muscle (<i>scm2</i>) is reduced in volume in the middle and/or hind legs. Notably, the enlargement in the volume of other muscle groups is directly linked to the legs or body parts engaged during the jump. Furthermore, a direct comparison of the muscle architecture revealed two significant differences between jumping vs. non-jumping ants: First, the relative Physiological Cross-Sectional Area (PCSA) of the trochanter depressor muscles of all three legs were larger in jumping ants, except in the front legs of <i>Odontomachus rixosus</i> and <i>Myrmecia nigrocincta</i>; second, the relative muscle fiber length was shorter in jumping ants compared to non-jumping counterparts, except in the front legs of <i>O. rixosus</i> and <i>M. nigrocincta</i>. These results suggest that the difference in relative muscle volume in jumping ants is largely invested in the area (PCSA), and not in fiber length. There was no clear difference in the pennation angle between jumping and non-jumping ants. Additionally, we report that the hind leg length relative to body length was longer in jumping ants. Based on direct comparison of the observed vs. possible work and power output during jumps, we surmise that direct muscle contractions suffice to explain jumping performance in three species, except for <i>O. rixosus</i>, where the lack of data on jumping performance prevents us from drawing definitive conclusions for this particular species. We suggest that increased investment in jumping-relevant musculature is a primary morphological adaptation that separates jumping from non-jumping ants. These results elucidate the common and idiosyncratic morphological changes underlying this rare adaptation in ants. まとぅみ (Okinawan language-Uchinaaguchi) (Japanese) РЕЗЮМЕ (Kazakh) ZUSAMMENFASSUNG (German).</p>","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10401624/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10323904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"From Fairies to Giants: Untangling the Effect of Body Size, Phylogeny, and Ecology on Vertebral Bone Microstructure of Xenarthran Mammals.","authors":"E H Zack, S M Smith, K D Angielczyk","doi":"10.1093/iob/obad002","DOIUrl":"https://doi.org/10.1093/iob/obad002","url":null,"abstract":"<p><p>Trabecular bone is a spongy bone tissue that serves as a scaffolding-like support inside many skeletal elements. Previous research found allometric variation in some aspects of trabecular bone architecture (TBA) and bone microstructure, whereas others scale isometrically. However, most of these studies examined very wide size and phylogenetic ranges or focused exclusively on primates or lab mice. We examined the impact of body size on TBA across a smaller size range in the mammalian clade Xenarthra (sloths, armadillos, and anteaters). We µCT-scanned the last six presacral vertebrae of 23 xenarthran specimens (body mass 120 g-35 kg). We collected ten gross-morphology measurements and seven TBA metrics and analyzed them using phylogenetic and nonphylogenetic methods. Most metrics had similar allometries to previous work. However, because ecology and phylogeny align closely in Xenarthra, the phylogenetic methods likely removed some covariance due to ecology; clarifying the impact of ecology on TBA in xenarthrans requires further work. Regressions for Folivora had high <i>P</i>-values and low <i>R</i>-squared values, indicating that the extant sloth sample either is too limited to determine patterns or that the unique way sloths load their vertebral columns causes unusually high TBA variation. The southern three-banded armadillo sits far below the regression lines, which may be related to its ability to roll into a ball. Body size, phylogeny, and ecology impact xenarthran TBA, but parsing these effects is highly complex.</p>","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9949600/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9356451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E D Treanore, A V Ramos-Medero, J Garcia, E Amsalem
{"title":"The Effect of Pollen Diet Composition and Quantity on Diapause Survival and Performance in an Annual Pollinator (<i>Bombus Impatiens</i>).","authors":"E D Treanore, A V Ramos-Medero, J Garcia, E Amsalem","doi":"10.1093/iob/obad014","DOIUrl":"https://doi.org/10.1093/iob/obad014","url":null,"abstract":"Synopsis Most pollination services are provided by annual bees that go through a winter diapause, during which they are exposed to extreme temperatures, pathogens, and starvation. The ability of bees to successfully face these stressors during diapause and subsequently initiate a nest depends on their overall nutritional state and an adequate preparatory diet. Here, we used queens of the common eastern bumble bee, Bombus impatiens, to examine how pollen diets varying in their protein to lipid ratio and total nutrient amounts affected queen performance during and after diapause. We compared diapause survival and reproductive performance post-diapause across different diets and found that queen survival was highest when pollen had a nutritional ratio of approximately 5:1 (protein to lipid). This diet is significantly enriched in proteins compared to the pollen fed to bumble bees in the lab (1:1) or commonly available in agricultural landscapes. Altering the quantity of macronutrients within this ratio did not improve survival or performance. Our results emphasize the importance of adequate nutrition for diapause performance in bees with annual life cycles and the importance of providing annual bees with floral provisioning based on their individual nutritional targets.","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10150274/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9763028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M A Fath, S V Nguyen, J Donahue, S K McMenamin, E D Tytell
{"title":"Static Stability and Swim Bladder Volume in the Bluegill Sunfish (<i>Lepomis macrochirus</i>).","authors":"M A Fath, S V Nguyen, J Donahue, S K McMenamin, E D Tytell","doi":"10.1093/iob/obad005","DOIUrl":"https://doi.org/10.1093/iob/obad005","url":null,"abstract":"<p><p>Static stability is a property inherent to every organism. More stable bodies benefit from a lower energy cost associated with maintaining a desired orientation, while less stable bodies can be more maneuverable. The static stability of a fish is determined by the relative locations of its center of mass (COM) and center of buoyancy (COB), which may change with changes in swim bladder volume. We hypothesized, however, that fish would benefit from consistent static stability, and predicted that changes in swim bladder volume would not alter the overall pattern of COM and COB locations. We used micro-computed tomography to estimate the locations of the COM and COB in bluegill sunfish (<i>Lepomis macrochirus</i>). Using this technique, we were able to find a small but significant difference between the location of the COM and COB for a given orientation. We found that the swim bladder can change shape within the body cavity, changing relative locations of the COM and COB. At one extreme, the COB is located 0.441 ± 0.007 BL from the snout and 0.190 ± 0.010 BL from the ventral surface of the pelvic girdle, and that the COM is 0.0030 ± 0.0020 BL posterior and 0.0006 ± 0.0005 BL ventral to the COB, a pattern that causes a nose-up pitching torque. At the other extreme, the COM is anterior and dorsal to the COB, a pattern that causes the opposite torque. These changes in location seems to be caused by changes in the shape and centroid location of the swim bladder within the body: The centroid of the swim bladder is located significantly more posteriorly in fish oriented head-down. The air in the bladder \"rises\" while heavier tissues \"sink,\" driving a change in tissue distribution and changing the location of the COM relative to the COB. Supporting our hypothesis, we found no correlation between swim bladder volume and the distance between the COM and COB. We conclude that bluegill are statically unstable, requiring them to expend energy constantly to maintain their normal orientation, but that the pitch angle of the body could alter the relative locations of COM and COB, changing their static stability.</p>","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10002887/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9109188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"GoodFibes: An R Package for The Detection of Muscle Fibers from diceCT Scans.","authors":"J H Arbour","doi":"10.1093/iob/obad030","DOIUrl":"https://doi.org/10.1093/iob/obad030","url":null,"abstract":"<p><p>Contrast enhanced computed-tomography imaging like diffusible iodine-based contrast-enhanced computed tomography (diceCT) can provide detailed information on muscle architecture important to comparative analyses of functional morphology, using non-destructive approaches. However, manual segmentation of muscle fascicles/fibers is time-consuming, and automated approaches are at times inaccessible and unaffordable. Here, we introduce GoodFibes, an R package for reconstructing muscle architecture in 3D from diceCT image stacks. GoodFibes uses textural analysis of image grayscale values to track straight or curved fiber paths through a muscle image stack. Accessory functions provide quality checking, fiber merging, and 3D visualization and export capabilities. We demonstrate the utility and effectiveness of GoodFibes using two datasets, from an ant and bat diceCT scans. In both cases, GoodFibes provides reliable measurements of mean fiber length compared to traditional approaches, and is as effective as currently available software packages. This open-source, free to use software package will help to improve access to tools in the analysis of muscle fiber anatomy using diceCT scans. The flexible and transparent R-language environment allows other users to build on the functions described here and permits direct statistical analysis of the resulting fiber metrics. We hope that this will increase the number of comparative and evolutionary studies incorporating these rich and functionally important datasets.</p>","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10461528/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10134130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Syngnathoid Evolutionary History and the Conundrum of Fossil Misplacement.","authors":"C D Brownstein","doi":"10.1093/iob/obad011","DOIUrl":"https://doi.org/10.1093/iob/obad011","url":null,"abstract":"<p><p>Seahorses, pipefishes, trumpetfishes, shrimpfishes, and allies are a speciose, globally distributed clade of fishes that have evolved a large number of unusual body plans. The clade that includes all these forms, Syngnathoidei, has become a model for the study of life history evolution, population biology, and biogeography. Yet, the timeline of syngnathoid evolution has remained highly contentious. This debate is largely attributable to the nature of the syngnathoid fossil record, which is both poorly described and patchy for several major lineages. Although fossil syngnathoids have been used to calibrate molecular phylogenies, the interrelationships of extinct species and their affinities to major living syngnathoid clades have scarcely been quantitatively tested. Here, I use an expanded morphological dataset to reconstruct the evolutionary relationships and clade ages of fossil and extant syngnathoids. Phylogenies generated using different analytical methodologies are largely congruent with molecular phylogenetic trees of Syngnathoidei but consistently find novel placements for several key taxa used as fossil calibrators in phylogenomic studies. Tip-dating of the syngnathoid phylogeny finds a timeline for their evolution that differs slightly from the one inferred using molecular trees but is generally congruent with a post-Cretaceous diversification event. These results emphasize the importance of quantitatively testing the relationships of fossil species, particularly when they are critical to assessing divergence times.</p>","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10210065/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9545291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K L Ford, J S Albert, A P Summers, B P Hedrick, E R Schachner, A S Jones, K Evans, P Chakrabarty
{"title":"A New Era of Morphological Investigations: Reviewing Methods for Comparative Anatomical Studies.","authors":"K L Ford, J S Albert, A P Summers, B P Hedrick, E R Schachner, A S Jones, K Evans, P Chakrabarty","doi":"10.1093/iob/obad008","DOIUrl":"https://doi.org/10.1093/iob/obad008","url":null,"abstract":"<p><p>The increased use of imaging technology in biological research has drastically altered morphological studies in recent decades and allowed for the preservation of important collection specimens alongside detailed visualization of bony and soft-tissue structures. Despite the benefits associated with these newer imaging techniques, there remains a need for more \"traditional\" methods of morphological examination in many comparative studies. In this paper, we describe the costs and benefits of the various methods of visualizing, examining, and comparing morphological structures. There are significant differences not only in the costs associated with these different methods (monetary, time, equipment, and software), but also in the degree to which specimens are destroyed. We argue not for any one particular method over another in morphological studies, but instead suggest a combination of methods is useful not only for breadth of visualization, but also for the financial and time constraints often imposed on early-career research scientists.</p>","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10081917/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9283667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J Rickman, A E Burtner, T J Linden, S E Santana, C J Law
{"title":"Size And Locomotor Ecology Have Differing Effects on the External and Internal Morphologies of Squirrel (Rodentia: Sciuridae) Limb Bones.","authors":"J Rickman, A E Burtner, T J Linden, S E Santana, C J Law","doi":"10.1093/iob/obad017","DOIUrl":"https://doi.org/10.1093/iob/obad017","url":null,"abstract":"<p><p>Mammals exhibit a diverse range of limb morphologies that are associated with different locomotor ecologies and structural mechanics. Much remains to be investigated, however, about the combined effects of locomotor modes and scaling on the external shape and structural properties of limb bones. Here, we used squirrels (Sciuridae) as a model clade to examine the effects of locomotor mode and scaling on the external shape and structure of the two major limb bones, the humerus and femur. We quantified humeral and femoral morphologies using 3D geometric morphometrics and bone structure analyses on a sample of 76 squirrel species across their four major ecotypes. We then used phylogenetic generalized linear models to test how locomotor ecology, size, and their interaction influenced morphological traits. We found that size and locomotor mode exhibit different relationships with the external shape and structure of the limb bones, and that these relationships differ between the humerus and femur. External shapes of the humerus and, to a lesser extent, the femur are best explained by locomotor ecology rather than by size, whereas structures of both bones are best explained by interactions between locomotor ecology and scaling. Interestingly, the statistical relationships between limb morphologies and ecotype were lost when accounting for phylogenetic relationships among species under Brownian motion. That assuming Brownian motion confounded these relationships is not surprising considering squirrel ecotypes are phylogenetically clustered; our results suggest that humeral and femoral variation partitioned early between clades and their ecomorphologies were maintained to the present. Overall, our results show how mechanical constraints, locomotor ecology, and evolutionary history may enact different pressures on the shape and structure of limb bones in mammals.</p>","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10286724/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9707624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Sister-Group Comparison of Branching and Pedicellariae in Brittlestars (Echinodermata: Ophiuroidea).","authors":"R L Turner, B O O'Neill","doi":"10.1093/iob/obad013","DOIUrl":"https://doi.org/10.1093/iob/obad013","url":null,"abstract":"<p><p>Branching of arms and presence of pedicellariae are characters among ophiuroids found only in the order Euryalida (snakestars and basketstars). Family Asteronychidae has neither character; family Euryalidae has 2 small clades with branched arms; and family Gorgonocephalidae has all species with pedicellariae and 3 or 4 clades with branched arms. Despite the rare occurrence of these characters in the Ophiuroidea, they might be key adaptations within the Euryalida that have led to relatively high diversification. Sister-group comparison of the distribution of these 2 characters among taxa indicates that neither character alone explains diversity patterns within the order. In particular, branching restricted to the tips of arms seems not strongly adaptive, probably for the lack of integration of basal forks with the disc. On the other hand, 2 clades of gorgonocephalids with basal branching exceed their snakestar sister groups in numbers of species, indicating an advantage of branching within the family. Unfortunately, the analysis cannot benefit from statistics, for at least 5 independent comparisons are required for a one-tailed sign test. Because branching and pedicellariae are probably not independent variables, future sister-group comparisons should be done only within the Gorgonocephalidae once clade structure is better clarified with increased taxon sampling (10 currently missing genera) and resolution of intra-generic inconsistencies in the most recent cladograms available. Branching might confer upon gorgonocephalid basketstars a more efficient use of pedicellariae for upstream capture of zooplankton over their snakestar relatives as well as over the Euryalidae, which retain ancestral downstream capture by mucus-laden podia.</p>","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10155225/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9844991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}