Proceedings of the 3rd IKDD Conference on Data Science, 2016最新文献

筛选
英文 中文
Audience Prism: Segmentation and Early Classification of Visitors Based on Reading Interests 受众棱镜:基于阅读兴趣的受众细分与早期分类
Proceedings of the 3rd IKDD Conference on Data Science, 2016 Pub Date : 2016-03-13 DOI: 10.1145/2888451.2888459
Lilly Kumari, Sunny Dhamnani, Akshat Bhatnagar, Atanu R. Sinha, R. Sinha
{"title":"Audience Prism: Segmentation and Early Classification of Visitors Based on Reading Interests","authors":"Lilly Kumari, Sunny Dhamnani, Akshat Bhatnagar, Atanu R. Sinha, R. Sinha","doi":"10.1145/2888451.2888459","DOIUrl":"https://doi.org/10.1145/2888451.2888459","url":null,"abstract":"The largest Media and Entertainment (M&E) web portals today cater to more than 100 Million unique visitors every month. In Customer Relationship Management, customer segmentation plays an important role, with the goal of targeting different products for different segments. Marketers segment their customers based on customer attributes. In the non-subscription based media business, the customer is analogous to the visitor, the product to the content, and a purchase to consumption. Knowing which segment an audience member belongs to, enables better engagement. In this work, we address the problems: 1) How can we segment audience members of an M&E web property based on their media consumption interests? 2) When a new visitor arrives, how can we classify them into one of the above defined segments (without having to wait for consumption history)? We apply our proposed solution to a real world data-set and show that we can achieve coherent clusters and can predict cluster membership with a high level of accuracy. We also build a tool that the editors can find valuable towards understanding their audience.","PeriodicalId":136431,"journal":{"name":"Proceedings of the 3rd IKDD Conference on Data Science, 2016","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124615212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Smart filters for social retrieval 用于社会检索的智能过滤器
Proceedings of the 3rd IKDD Conference on Data Science, 2016 Pub Date : 2016-03-13 DOI: 10.1145/2888451.2888457
Balaji Vasan Srinivasan, Tanya Goyal, N. M. Nainani, Kartik K. Sreenivasan
{"title":"Smart filters for social retrieval","authors":"Balaji Vasan Srinivasan, Tanya Goyal, N. M. Nainani, Kartik K. Sreenivasan","doi":"10.1145/2888451.2888457","DOIUrl":"https://doi.org/10.1145/2888451.2888457","url":null,"abstract":"Social media platform are increasingly becoming a rich source of information for capturing the views and opinions of online customers. Major brands listen to the social streams to understand the general pulse of their online community. The foremost task here is to construct a \"filter\" to fetch the brand-relevant data from the social streams. Due to the nature of social platforms, simple filters/queries for retrieval yield a lot of noise leading to a need for complicated filters. Constructing such complicated filters is a non-trivial task and requires significant time-investment from a social marketer. In this paper, we propose a method to automate this task by expanding a seed set of watch keywords to maximize the number of retrieved relevant social feeds around the brand and combining them appropriately into a social query. We show the strengths and weaknesses of the proposed approach in the light of real-world social feeds for various brands.","PeriodicalId":136431,"journal":{"name":"Proceedings of the 3rd IKDD Conference on Data Science, 2016","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114259044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
An Approach to Allocate Advertisement Slots for Banner Advertising 一种条幅广告的广告位分配方法
Proceedings of the 3rd IKDD Conference on Data Science, 2016 Pub Date : 2016-03-13 DOI: 10.1145/2888451.2888472
V. Kavya, P. Reddy
{"title":"An Approach to Allocate Advertisement Slots for Banner Advertising","authors":"V. Kavya, P. Reddy","doi":"10.1145/2888451.2888472","DOIUrl":"https://doi.org/10.1145/2888451.2888472","url":null,"abstract":"In the banner advertising scenario, an advertiser aims to reach the maximum number of potential visitors and a publisher tries to meet the requests of increased number of advertisers to maximize the revenue. In the literature, a model was introduced to extract the knowledge of coverage patterns from transactional database. In this paper, we propose an ad slots allocation approach by extending the notion of coverage patterns to select distinct sets of ad slots to meet the requests of multiple advertisers. The preliminary experimental results on a real world dataset show that the proposed approach meets the requests of increased number of advertisers when compared with the baseline approach of allocation.","PeriodicalId":136431,"journal":{"name":"Proceedings of the 3rd IKDD Conference on Data Science, 2016","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125566694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Consensus Clustering Approach for Discovering Overlapping Nodes in Social Networks 社会网络重叠节点发现的共识聚类方法
Proceedings of the 3rd IKDD Conference on Data Science, 2016 Pub Date : 2016-03-13 DOI: 10.1145/2888451.2888471
D. Shankar, S. Bhavani
{"title":"Consensus Clustering Approach for Discovering Overlapping Nodes in Social Networks","authors":"D. Shankar, S. Bhavani","doi":"10.1145/2888451.2888471","DOIUrl":"https://doi.org/10.1145/2888451.2888471","url":null,"abstract":"Community discovery is an important problem that has been addressed in social networks through multiple perspectives. Most of these algorithms discover disjoint communities and yield widely varying results with regard to number of communities as well as community membership. We utilize this information positively by interpreting the results as opinions of different algorithms regarding membership of a node in a community. A novel approach to discovering overlapping nodes is proposed based on Consensus Clustering and we design two algorithms, namely core-consensus and periphery-consensus. The algorithms are implemented on LFR networks which are synthetic bench mark data sets created for community discovery and comparative performance is presented. It is shown that overlapping nodes are detected with a high Recall of above 96 % with an average F-measure of nearly 75% for dense networks and 65% for sparse networks which are on par with high-performing algorithms in the literature.","PeriodicalId":136431,"journal":{"name":"Proceedings of the 3rd IKDD Conference on Data Science, 2016","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131438514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Feature Creation based Slicing for Privacy Preserving Data Mining 基于特征创建的隐私保护数据挖掘切片
Proceedings of the 3rd IKDD Conference on Data Science, 2016 Pub Date : 2016-03-13 DOI: 10.1145/2888451.2888462
R. Priyadarsini, M. Valarmathi, S. Sivakumari
{"title":"Feature Creation based Slicing for Privacy Preserving Data Mining","authors":"R. Priyadarsini, M. Valarmathi, S. Sivakumari","doi":"10.1145/2888451.2888462","DOIUrl":"https://doi.org/10.1145/2888451.2888462","url":null,"abstract":"In the digital era vast amount of data are collected and shared for purpose of research and analysis. These data contain sensitive information about the people and organizations which needs to be protected during the process of data mining. This work proposes Feature Creation Based Slicing [FCBS] algorithm for preserving privacy such that sensitive data are not exposed during the process of data mining in Multi Trust Level [MTL] environment. The proposed algorithm applies three layers of privacy preservation using both perturbation and non-perturbation techniques and creates new features from already existing attribute vector. Experiments are performed on real life and benchmarked datasets and the results are compared with the existing slicing and L-diversity algorithms. The results show that privacy preserved datasets generated using the proposed algorithm yields negligible hiding failure while protecting sensitive patterns during association mining and gives comparable utility during classification. Due to feature creation process in the proposed algorithm, linking and known background attacks are prevented. Also, the variance values of the proposed privacy preserved datasets show that they can prevent diversity attacks.","PeriodicalId":136431,"journal":{"name":"Proceedings of the 3rd IKDD Conference on Data Science, 2016","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134623794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Events Describe Places: Tagging Places with Event Based Social Network Data 事件描述地点:用基于事件的社会网络数据标记地点
Proceedings of the 3rd IKDD Conference on Data Science, 2016 Pub Date : 2016-03-13 DOI: 10.1145/2888451.2888477
Vinod Hegde, A. Mileo, A. Pozdnoukhov
{"title":"Events Describe Places: Tagging Places with Event Based Social Network Data","authors":"Vinod Hegde, A. Mileo, A. Pozdnoukhov","doi":"10.1145/2888451.2888477","DOIUrl":"https://doi.org/10.1145/2888451.2888477","url":null,"abstract":"Location based services and Geospatial web applications have become popular in recent years due to wide adoption of mobile devices. Search and recommendation of places or Points of Interests (PoIs) are prominent services available on them. The effectiveness of these services crucially depends on the availability of tags that are descriptive of places. The major geospatial databases that contain data about places suffer from the lack of descriptive tags for places, since writing them is a time-consuming process and only a few users do it despite having knowledge about places. In order to tackle this issue and automatically generate descriptive tags for places, we propose a solution that utilizes data about a set of events that happen in a specific place and use it to extract meaningful descriptive tags for that place. We use data about events held at places on Meetup, a well known event based social network and apply Latent Dirichlet Allocation (LDA) to derive sets of probable descriptive tags for any place. In order to evaluate our approach, we measure semantic relatedness between tags derived for places on Meetup and manually assigned tags from Foursquare, a location based service. Results show that event data can be used to derive semantically relevant place tags. This shows that location based services can benefit from capturing data about events to derive place tags.","PeriodicalId":136431,"journal":{"name":"Proceedings of the 3rd IKDD Conference on Data Science, 2016","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129671726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Learning from Gurus: Analysis and Modeling of Reopened Questions on Stack Overflow 向大师学习:堆栈溢出重新开放问题的分析和建模
Proceedings of the 3rd IKDD Conference on Data Science, 2016 Pub Date : 2016-03-13 DOI: 10.1145/2888451.2888460
Rishabh Gupta, P. Reddy
{"title":"Learning from Gurus: Analysis and Modeling of Reopened Questions on Stack Overflow","authors":"Rishabh Gupta, P. Reddy","doi":"10.1145/2888451.2888460","DOIUrl":"https://doi.org/10.1145/2888451.2888460","url":null,"abstract":"Community-driven Question Answering (Q&A) platforms are gaining popularity now-a-days and the number of posts on such platforms are increasing tremendously. Thus, the challenge to keep these platforms noise-free is attracting the interest of research community. Stack Overflow is one such popular computer programming related Q&A platform. The established users on Stack Overflow have learnt the acceptable format and scope of questions in due course. Even if their questions get closed, they are aware of the required edits, therefore the chances of their questions being reopened increases. On the other hand, non-established users have not adapted to the Stack Overflow system and find difficulty in editing their closed questions. In this work, we aim to identify features which help differentiate editing approaches of established and non-established users, and motivate the need of recommendation model. Such a recommendation model can assist every user to edit their closed questions leveraging the edit-style of the established users of the platform.","PeriodicalId":136431,"journal":{"name":"Proceedings of the 3rd IKDD Conference on Data Science, 2016","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121798588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
AMEO 2015: A dataset comprising AMCAT test scores, biodata details and employment outcomes of job seekers AMEO 2015:一个包含AMCAT测试分数、求职者生物数据细节和就业结果的数据集
Proceedings of the 3rd IKDD Conference on Data Science, 2016 Pub Date : 2016-03-13 DOI: 10.1145/2888451.2892037
V. Aggarwal, Shashank Srikant, Harsh Nisar
{"title":"AMEO 2015: A dataset comprising AMCAT test scores, biodata details and employment outcomes of job seekers","authors":"V. Aggarwal, Shashank Srikant, Harsh Nisar","doi":"10.1145/2888451.2892037","DOIUrl":"https://doi.org/10.1145/2888451.2892037","url":null,"abstract":"More than a million engineers enter the global workforce every year. A relevant question is what determines the jobs and salaries these engineers are offered right after graduation. Previous studies have shown the influence of various factors such as college reputation, grades, the field one specializes in and market conditions for specific industries. An important input which such analyses do not have is a standardized measures of job skills done at the time of completion of studies. We present here Aspiring Minds' Employability Outcomes 2015 (AMEO 2015), a unique dataset which provides engineering graduates' employment outcomes (salaries, job titles and job locations) together with standardized assessment scores in three fundamental areas - cognitive skills, technical skills and personality. Coupled with biodata information, AMEO 2015 provides an opportunity for a unique and comprehensive study of the entry level labor market. The data could be used to make an accurate salary predictor, but also understand what influences salary and job titles in the labor market. In this paper we describe the details of the dataset and discuss a spectrum of questions around meritocracy in labor markets, biases in labor selection and other prevalent market forces it can help uncover and answer. You can download the dataset at: http://research.aspiringminds.com/resources/","PeriodicalId":136431,"journal":{"name":"Proceedings of the 3rd IKDD Conference on Data Science, 2016","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117091361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Detecting Community Structures in Social Networks by Graph Sparsification 基于图稀疏的社交网络社区结构检测
Proceedings of the 3rd IKDD Conference on Data Science, 2016 Pub Date : 2016-03-13 DOI: 10.1145/2888451.2888479
Partha Basuchowdhuri, Satyaki Sikdar, Sonu Sreshtha, S. Majumder
{"title":"Detecting Community Structures in Social Networks by Graph Sparsification","authors":"Partha Basuchowdhuri, Satyaki Sikdar, Sonu Sreshtha, S. Majumder","doi":"10.1145/2888451.2888479","DOIUrl":"https://doi.org/10.1145/2888451.2888479","url":null,"abstract":"Community structures are inherent in social networks and finding them is an interesting and well-studied problem. Finding community structures in social networks is similar to locating densely connected clusters of nodes in a graph. One of the popular methods for finding communities is to first find the inter-community edges and then removing them to reveal the communities. It is well-known that a network centrality measure named edge betweenness can be used to detect the inter-community edges. The edges with high edge betweenness are those that fall in a large number of shortest paths out of all possible pairs of shortest paths. Finding all-pair shortest paths is a computationally expensive task, especially for large-sized graphs. So we construct a t-spanner, a known graph sparsification technique, for finding edges with high betweenness and eventually find communities by removing such edges. Using the t-spanner, we then detect the inter-community edges in O(km) running time by building a distance oracle of size O(kn1+1/k), where t = 2k-1. Compared to the traditional community detection methods dependent on calculation of betweenness values, our algorithm runs much faster. Experiments show that our algorithm finds communities of quality comparable to the other state-of-the-art community detection algorithms.","PeriodicalId":136431,"journal":{"name":"Proceedings of the 3rd IKDD Conference on Data Science, 2016","volume":"104 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134506644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Improving Urban Transportation through Social Media Analytics 通过社交媒体分析改善城市交通
Proceedings of the 3rd IKDD Conference on Data Science, 2016 Pub Date : 2016-03-13 DOI: 10.1145/2888451.2888478
Manjira Sinha, P. Varma, Gayatri Sivakumar, Mridula Singh, Tridib Mukherjee, D. Chander, K. Dasgupta
{"title":"Improving Urban Transportation through Social Media Analytics","authors":"Manjira Sinha, P. Varma, Gayatri Sivakumar, Mridula Singh, Tridib Mukherjee, D. Chander, K. Dasgupta","doi":"10.1145/2888451.2888478","DOIUrl":"https://doi.org/10.1145/2888451.2888478","url":null,"abstract":"Citizens tend to discuss issues in public forums, social media, and web blogs. Given that issues related to public transportation are most actively reported across web-based sources, we present a holistic framework for collection, categorization, aggregation and visualization of urban public transportation issues. The primary challenges in deriving useful insights from web-based sources, stem from -- (a) the number of reports; (b) incomplete or implicit spatio-temporal context; and the (c) unstructured nature of text in these reports. The work initiates with the formal complaint data from the largest public transportation agency in Bangalore, complemented by complaint reports from web-based and social media sources. Text data is categorized into different transportation related problems and spatio-temporal context is added to the text data for geo-tagging and identifying persistent issues. A well-organized dashboard is developed for efficient visualization. The dashboard is currently being piloted with the largest transportation agency in Bangalore.","PeriodicalId":136431,"journal":{"name":"Proceedings of the 3rd IKDD Conference on Data Science, 2016","volume":"90 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116620735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信