利用排序联合增强经济高效的情感流分析

Prateek Goel, Manajit Chakraborty, C. R. Chowdary
{"title":"利用排序联合增强经济高效的情感流分析","authors":"Prateek Goel, Manajit Chakraborty, C. R. Chowdary","doi":"10.1145/2888451.2888468","DOIUrl":null,"url":null,"abstract":"Sentiment drifts due to people changing their opinions instantly on microblogs e.g. Twitter, are a major challenge in sentiment analysis. In this paper, we have developed a method that selects most frequent messages from a relevant message set constructed using state-of-the-art sampling approaches. Our proposed technique increases the robustness of the classifier against sentiment drifts. Experiments conducted on three publicly available standard Twitter datasets reveal that the modified version performs better in terms of reduction in training resources, error minimization and execution time.","PeriodicalId":136431,"journal":{"name":"Proceedings of the 3rd IKDD Conference on Data Science, 2016","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Sort-Union to Enhance Economically-Efficient Sentiment Stream Analysis\",\"authors\":\"Prateek Goel, Manajit Chakraborty, C. R. Chowdary\",\"doi\":\"10.1145/2888451.2888468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sentiment drifts due to people changing their opinions instantly on microblogs e.g. Twitter, are a major challenge in sentiment analysis. In this paper, we have developed a method that selects most frequent messages from a relevant message set constructed using state-of-the-art sampling approaches. Our proposed technique increases the robustness of the classifier against sentiment drifts. Experiments conducted on three publicly available standard Twitter datasets reveal that the modified version performs better in terms of reduction in training resources, error minimization and execution time.\",\"PeriodicalId\":136431,\"journal\":{\"name\":\"Proceedings of the 3rd IKDD Conference on Data Science, 2016\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd IKDD Conference on Data Science, 2016\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2888451.2888468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd IKDD Conference on Data Science, 2016","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2888451.2888468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于人们在微博(如Twitter)上立即改变自己的观点而导致的情绪漂移是情绪分析中的一个主要挑战。在本文中,我们开发了一种方法,从使用最先进的采样方法构建的相关消息集中选择最频繁的消息。我们提出的技术增加了分类器对情感漂移的鲁棒性。在三个公开可用的标准Twitter数据集上进行的实验表明,修改后的版本在减少训练资源、最小化错误和执行时间方面表现更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Sort-Union to Enhance Economically-Efficient Sentiment Stream Analysis
Sentiment drifts due to people changing their opinions instantly on microblogs e.g. Twitter, are a major challenge in sentiment analysis. In this paper, we have developed a method that selects most frequent messages from a relevant message set constructed using state-of-the-art sampling approaches. Our proposed technique increases the robustness of the classifier against sentiment drifts. Experiments conducted on three publicly available standard Twitter datasets reveal that the modified version performs better in terms of reduction in training resources, error minimization and execution time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信