{"title":"利用排序联合增强经济高效的情感流分析","authors":"Prateek Goel, Manajit Chakraborty, C. R. Chowdary","doi":"10.1145/2888451.2888468","DOIUrl":null,"url":null,"abstract":"Sentiment drifts due to people changing their opinions instantly on microblogs e.g. Twitter, are a major challenge in sentiment analysis. In this paper, we have developed a method that selects most frequent messages from a relevant message set constructed using state-of-the-art sampling approaches. Our proposed technique increases the robustness of the classifier against sentiment drifts. Experiments conducted on three publicly available standard Twitter datasets reveal that the modified version performs better in terms of reduction in training resources, error minimization and execution time.","PeriodicalId":136431,"journal":{"name":"Proceedings of the 3rd IKDD Conference on Data Science, 2016","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Sort-Union to Enhance Economically-Efficient Sentiment Stream Analysis\",\"authors\":\"Prateek Goel, Manajit Chakraborty, C. R. Chowdary\",\"doi\":\"10.1145/2888451.2888468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sentiment drifts due to people changing their opinions instantly on microblogs e.g. Twitter, are a major challenge in sentiment analysis. In this paper, we have developed a method that selects most frequent messages from a relevant message set constructed using state-of-the-art sampling approaches. Our proposed technique increases the robustness of the classifier against sentiment drifts. Experiments conducted on three publicly available standard Twitter datasets reveal that the modified version performs better in terms of reduction in training resources, error minimization and execution time.\",\"PeriodicalId\":136431,\"journal\":{\"name\":\"Proceedings of the 3rd IKDD Conference on Data Science, 2016\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd IKDD Conference on Data Science, 2016\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2888451.2888468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd IKDD Conference on Data Science, 2016","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2888451.2888468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using Sort-Union to Enhance Economically-Efficient Sentiment Stream Analysis
Sentiment drifts due to people changing their opinions instantly on microblogs e.g. Twitter, are a major challenge in sentiment analysis. In this paper, we have developed a method that selects most frequent messages from a relevant message set constructed using state-of-the-art sampling approaches. Our proposed technique increases the robustness of the classifier against sentiment drifts. Experiments conducted on three publicly available standard Twitter datasets reveal that the modified version performs better in terms of reduction in training resources, error minimization and execution time.