{"title":"Comprehensive analysis and process simulation of biodiesel production from biomass sources","authors":"","doi":"10.56042/ijct.v30i5.5203","DOIUrl":"https://doi.org/10.56042/ijct.v30i5.5203","url":null,"abstract":"The present research work entails the process simulation of biodiesel production on a large scale using the ASPEN process simulator. Catalytic transesterification and non-catalytic supercritical mode of transesterification are simulated with experimental results and compared to determine the efficient mode of transesterification under different initial feedstock raw material conditions. It is found that the supercritical method (280℃; 276.4 atm; 42:1 for alcohol and oil ratio) is efficient in terms of cost and product quality for the feedstocks with high Free Fatty Acid (FFA) content. For feedstocks with a negligible amount of FFA, alkali-catalyzed homogeneous transesterification (60-65℃; 4atm; 6:1- alcohol: oil ratio) is efficient in terms of product quality and yield although the cost is similar to that of the supercritical mode of transesterification. Pre-treatment steps like simple esterification and glycerolysis for high FFA-contained feedstocks are studied using the ASPEN simulation to understand better the overall process by which the pre-treatment is carried out. Finally, the combustion characteristics of the biodiesel blend along with n-heptane (a surrogate for Petro-diesel) are studied using the Python scripted Cantera combustion chamber and it is found that the amount of soot and carbon monoxide emission is very less indicating complete and efficient combustion. This simulation study is carried out with the help of DWSIM simulation software.","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":"269 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135444883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Magneto-hybrid nanofluid (〖Al〗_2 O_3 / Cu-Oil) flow in a porous square enclosure with Cattaneo-Christov heat flow model-sensitivity analysis","authors":"","doi":"10.56042/ijct.v30i5.5194","DOIUrl":"https://doi.org/10.56042/ijct.v30i5.5194","url":null,"abstract":"The rheological behaviour of nanofluids is an important specification that has a substantial impact on the system performance. The effect of an inclined magnetic field on mixed convection in a square cavity through a porous medium has been numerically investigated in the current paper. Various levels of thermal conductivity have been maintained on each wall throughout the system. Additionally, the Cattaneo-Christov heat flow model is influenced in the energy equation. The conservation equations for primary, secondary, and mass momentum, energy, and nanoparticles with wall boundary conditions are dimensionless and coupled to proper scaling transformations. To address the dimensionless nonlinear coupled boundary value problem, a finite-difference computing methodology known as the Harlow-Welch Marker and Cell (MAC) method is used. The fundamental goal of this research is to look at the rheological behaviour of nanoparticles as base fluids in the aforementioned effects. The influence of factors on the physical framework such as Richardson number (Ri), Hartmann number (Ha), Darcy number (Da), Reynolds number (Re), and Prandtl number (Pr) is investigated graphically. The MATLAB software is used to obtain streamlined and isothermal contours. The findings indicate an enhancement in the average Nusselt number with an increase in the parameters. Furthermore, the presence of nanoparticles raises the average Nusselt number for low values of the Reynolds number. The system is analyzed with three convection stages of Richardson number, and it is also found that for mixed convection, the system holds better results. The obtained outcomes are compared with well-known existing findings to validate the present work.","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135446280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metal doping in g-C3N4 and tuning of band-gap for dye degradation using visible light","authors":"","doi":"10.56042/ijct.v30i5.5211","DOIUrl":"https://doi.org/10.56042/ijct.v30i5.5211","url":null,"abstract":"Graphitic carbon nitride (g-C3N4), as a fascinating conjugated polymer, has been the hotspot in science as a metal-free and visible-light-responsive photocatalyst. Pure g-C3N4 suffers from insufficient sunlight absorption, low surface area and the fast recombination of photo-induced electron-hole pairs, resulting in low photocatalytic activity. Utilizing the thermal polymerization process, metal-doped g-C3N4 has been formed and the formed catalysts employed for the degradation of methyl orange under visible light. The produced catalysts have been examined using a variety of characterisation techniques and by experimental means. The lowering of band gap and improved photocatalytic activity of the as-prepared catalyst is resulted by metal doping.","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":"183 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135446773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An investigation of characteristics of a diesel engine with low heat rejection fuelled by spirulina algae biodiesel","authors":"","doi":"10.56042/ijct.v30i6.4392","DOIUrl":"https://doi.org/10.56042/ijct.v30i6.4392","url":null,"abstract":"This study investigates the impact of magnesium oxide nanoparticles on the performance, combustion, and emissions characteristics of spirulina algae methyl ester biodiesel in a low heat rejection (LHR) engine. The cylinder head and piston of the engine are coated with a 200-micron layer of lanthanum aluminate. The results indicate promising outcomes with biodiesel in the LHR engine, showing improved thermal efficiency and reduced specific fuel consumption compared to conventional diesel engines. Tests have been conducted on B20, B20+25 ppm of MgO, and B20+50 ppm of MgO biodiesel blends with coated and untreated components. The coated piston with B20+50 ppm of MgO (LHR) demonstrate a 1.73% increase in brake thermal efficiency and a 7.2% decrease in specific fuel consumption compared to an untreated piston. Furthermore, the B20+50 ppm of MgO (LHR) in B20 experience a 5.9% reduction in-cylinder pressure and a 6.9% decrease in heat release rate. Additionally, the coated engine exhibit lower CO, HC, and smoke emissions from the biodiesel blends than the conventional engine.","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135661273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Catalytic cracking of gas oil derived from heavy crude oil over biochar-based catalyst","authors":"","doi":"10.56042/ijct.v30i6.6549","DOIUrl":"https://doi.org/10.56042/ijct.v30i6.6549","url":null,"abstract":"","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135611974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of electroplating time on microstructure, corrosion and wear behaviour of Ni-P-W-TiO2 coating","authors":"","doi":"10.56042/ijct.v30i1.34758","DOIUrl":"https://doi.org/10.56042/ijct.v30i1.34758","url":null,"abstract":"","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":"1 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70701377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis and characterization of highly substituted pyrazoles using silicaphosphoric acid nanoparticles as a recoverable heterogeneous solid acid catalys","authors":"","doi":"10.56042/ijct.v30i4.66505","DOIUrl":"https://doi.org/10.56042/ijct.v30i4.66505","url":null,"abstract":"Highly substituted pyrazoles have been prepared by condensing 1,3-diketones and various hydrazine derivatives using silica-phosphoric acid nanoparticles (nano-SPA). This nano solid catalyst has been prepared by the reaction of nano silica chloride with dry phosphoric acid. This green methodology has advantages such as short reaction times, simple work-up, high efficiency, reusability of the catalyst and no use of any solvents.","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":"1 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70701638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multiphase pyrolysis of waste expanded polystyrene and in-situ hydrogenation of pyrolysis oil on silica-alumina supported nickel catalyst for the production of fuel range paraffinic and aromatic hydrocarbons","authors":"A. Verma, H. Pramanik","doi":"10.56042/ijct.v30i4.66513","DOIUrl":"https://doi.org/10.56042/ijct.v30i4.66513","url":null,"abstract":"In this work, thermal and catalytic pyrolysis of waste expanded polystyrene (WEPS) have been investigated in a laboratory designed semi-batch reactor in the temperature range of 400-700℃ and heating rate of 15 ℃/min to produce gasoline range lower paraffins and valuable aromatics i.e., benzene, toluene and ethylbenzene (BTE). Three different type of reactor arrangements i.e., liquid phase/A-type, vapour phase/B-type and multiphase/AB-type have been used to conduct the catalytic pyrolysis of WEPS using nickel on silica-alumina catalyst. The thermal pyrolysis of WEPS produced highest liquid yield of 94.37 wt.% at a temperature of 650℃ and heating rate of 15 ℃/min, whereas, liquid phase/A-type, vapour phase/B-type and multiphase/AB-type catalytic pyrolysis produced highest liquid yield of 88.54 wt.%, 83.21 wt.%, and 81.15 wt.%, respectively, at the same heating rate of 15 o C/min and at the temperature of 600℃, 550℃, and 550℃, respectively. The pyrolysis oil obtained from thermal pyrolysis mainly contains styrene monomer of 84.74 wt.% and very less BTE content of 11.38 wt.%. Among, the all types of catalytic pyrolysis, AB-type/multiphase pyrolysis produced pyrolysis oil with highest amount of BTE content of 28.56 wt.%. Furthermore, the pyrolysis oil obtained from A-type, B-type and AB-type catalytic pyrolysis contains low styrene content of 69.94 wt.%, 65.67 wt.% and 55.55 wt.%, respectively, as compared to thermal pyrolysis (84.74 wt.%).","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":"6 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70701645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Removal of lead (II) ion from industrial wastewater by activated carbon prepared from Vitex negundo using batch adsorption studies","authors":"","doi":"10.56042/ijct.v30i3.70662","DOIUrl":"https://doi.org/10.56042/ijct.v30i3.70662","url":null,"abstract":"","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":"1 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70701884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}