{"title":"Unraveling the impact of sodium nitroprusside on morphogenesis, selected phytochemical profiling, and antioxidant activities of in vitro–raised plantlets of Citrus indica Yu. Tanaka","authors":"M. Wanlambok Sanglyne, Meera Chettri Das","doi":"10.1007/s11627-023-10400-1","DOIUrl":"https://doi.org/10.1007/s11627-023-10400-1","url":null,"abstract":"<p>The objective of this study was to assess the effect of sodium nitroprusside (SNP) on the morphology, physiology, and biochemistry of <i>Citrus indica</i> Yu. Tanaka, which is considered a native and endangered species in northeast India. Moreover, <i>C. indica</i> seeds do not germinate well in their natural habitat, and the species does not have a good commercial standing in terms of valuable metabolite synthesis. Therefore, an efficient quick-growth method with improved phytochemical synthesis has been accomplished. For mass production employing micropropagation with embryos as explants, Murashige and Skoog (MS) medium was supplemented with 0.2 µM, 0.4 µM, and 0.6 µM of SNP, 3.0 µM of 6-benzylaminopurines (BAP), and 4.0 µM of thidiazuron (TDZ). The results showed that 0.4 µM of SNP alone or in conjunction with 3.0 µM of BAP was sufficient to improve morphological characteristics. In addition, established clones were examined for membrane stability by measuring electrolyte leakage (EL) and malondialdehyde (MDA), as well as photosynthetic pigment and carotenoids. In almost all the cases, high values were recorded when 0.4 µM of SNP was used, either singly or in conjunction with 3.0 µM of BAP in the MS medium. Clonally produced plantlets were also subjected to phytochemical screening and antioxidant activities, such as hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), superoxide anion, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, wherein these tests also revealed incorporation of SNP exhibited enhanced phytochemical concentrations and antioxidant activities. This research can thus be used to mass produce <i>in vitro</i> plantlets with considerably higher quantities of secondary metabolites, which may make them more resistant to environmental challenges than their natural counterparts without treatment.</p>","PeriodicalId":13293,"journal":{"name":"In Vitro Cellular & Developmental Biology - Plant","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139051898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimized protocol for isolation and transient expression of placenta-originated protoplast in pepper (Capsicum annuum L.)","authors":"","doi":"10.1007/s11627-023-10404-x","DOIUrl":"https://doi.org/10.1007/s11627-023-10404-x","url":null,"abstract":"<h3>Abstract</h3> <p>Pepper (<em>Capsicum annuum</em> L.) is one of the most widely cultivated species and is highly valued for its pungency. The pungency of pepper is primarily attributed to a group of chemical compounds known as capsaicinoids. These compounds are synthesized in the placental tissue of pepper fruits through the activation of specific genes and enzymes, thereby contributing to their pungency. Protoplast-based gene expression systems have been considered an efficient method for gene function studies, protein-protein interactions, promoter analysis, and subcellular localization. Here, we optimized an efficient protocol for isolating protoplasts from pepper placental tissues and the polyethylene glycol (PEG)-mediated transient expression of green fluorescent proteins (GFP). Several factors affecting GFP expression in intact protoplasts were evaluated and optimized in this study. Protoplast isolation was carried out using 2.0% cellulase “onozuka” R-10 and 0.3% macerozyme R-10 solution. Different amounts of plasmid DNA and various incubation times for transfection with 40% PEG resulted in different transfection efficiencies (78–85%). The highest GFP transformation efficiency was observed when 120 µL protoplast suspension (3 × 10<sup>7</sup> to 5 × 10<sup>7</sup>/mL) was mixed with 15 µg plasmid DNA and incubated for 25 min with an equal volume of 40% PEG. The improved protocol described in this study can be helpful for the isolation and transfection of pepper placenta-originated protoplasts and for the rapid investigation of pepper gene functions.</p>","PeriodicalId":13293,"journal":{"name":"In Vitro Cellular & Developmental Biology - Plant","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139031212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chukwunalu O. Ossai, Morufat O. Balogun, Norbert G. Maroya
{"title":"Organogenesis versus somatic embryogenesis pathway efficiencies in in vitro propagation of white and water yams","authors":"Chukwunalu O. Ossai, Morufat O. Balogun, Norbert G. Maroya","doi":"10.1007/s11627-023-10397-7","DOIUrl":"https://doi.org/10.1007/s11627-023-10397-7","url":null,"abstract":"<p>The primary goal of this study was to compare the multiplication rates of yam varieties propagated through organogenesis and somatic embryogenesis (SE). Callus was induced from axillary bud explants of three genotypes of <i>Dioscorea rotundata</i> (Asiedu, Ekiti2a, and Kpamyo) and two genotypes of <i>Dioscorea alata</i> (Swaswa and TDa2014) cultured in Murashige and Skoog (MS) medium containing 9.1 µM 2,4-dichlorophenoxylacetic acid and 5.4 µM naphthaleneacetic acid. Plantlets were regenerated in MS containing 4.4 µM benzylaminopurine and 34 µM uniconazole-P through SE. Single-node cuttings of the five genotypes were grown in MS for 8 wk <i>via</i> organogenesis. The SE and organogenesis regenerants were acclimatized and potted in a 2 (propagation techniques (PTs)) × 5 (genotypes) factorial arranged in a completely randomized design (<i>r</i> = 10). The multiplication ratios (MR), number of tubers (NoT) of the SE, and organogenesis regenerants were collected and analyzed using ANOVA, and means were separated using DMRT (<i>P</i> ≤ 0.05). The SE and organogenesis MR ranged from 1:2 (TDa2014) to 1:8 (Asiedu) and 1:4 (Asiedu) to 1:5 (Ekiti2a and TDa2014), respectively. The NoT differed among genotypes, ranging from 1.15 ± 0.49 (Swaswa) to 2.45 ± 1.39 (Asiedu), and between PTs, ranging from 1.42 ± 0.70 (SE) to 1.86 ± 1.11 (organogenesis). The optimum propagation pathway was genotype-specific.</p>","PeriodicalId":13293,"journal":{"name":"In Vitro Cellular & Developmental Biology - Plant","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138518012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alyson M. DeNittis, Joseph M. Larson, Olga Ruiz Kopp
{"title":"Micropropagation of Lepidium ostleri (Brassicaceae), a native endemic plant species","authors":"Alyson M. DeNittis, Joseph M. Larson, Olga Ruiz Kopp","doi":"10.1007/s11627-023-10376-y","DOIUrl":"https://doi.org/10.1007/s11627-023-10376-y","url":null,"abstract":"<p><i>Lepidium ostleri</i> S.L. Welsh & Goodrich (Ostler’s peppergrass) is an endemic plant species restricted to Ordovician limestone outcrops associated with the San Francisco Mountain Range in western Utah. Due to restricted population distribution and proximity to modern mining operations, <i>L. ostleri</i> is a species of conservation interest. This study focused on the development of a micropropagation protocol for propagating mature plants using plant tissue culture methods. Indirect shoot organogenesis was obtained from <i>L. ostleri</i> explants on Murashige and Skoog (MS) medium augmented with various concentrations of BAP (6-Benzylaminopurine), kinetin (N6-furfuryladenine), and IAA (indole-3-acetic acid). Plantlets supporting shoots grown <i>in vitro</i> were pulse treated with differing strengths of indole-3-butyric acid (IBA) and transferred to sterile soil. Following root induction, plantlets were acclimated to ambient conditions. The successful development of a micropropagation protocol supports management activities for <i>L. ostleri</i> and also contributes to <i>in vitro</i> propagation knowledge at the species, genus, and family levels.</p>","PeriodicalId":13293,"journal":{"name":"In Vitro Cellular & Developmental Biology - Plant","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138517947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jonathan Lidbetter, Antoine Martin, Sophie Parks, Paul Holford, P. Milham
{"title":"Mineral analysis of Corymbia maculata plantlets: a shortcut to optimize the mineral concentrations in tissue culture media","authors":"Jonathan Lidbetter, Antoine Martin, Sophie Parks, Paul Holford, P. Milham","doi":"10.1007/s11627-023-10372-2","DOIUrl":"https://doi.org/10.1007/s11627-023-10372-2","url":null,"abstract":"","PeriodicalId":13293,"journal":{"name":"In Vitro Cellular & Developmental Biology - Plant","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74119768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The effects of AtEXO70E2 overexpression on the secretion and production of recombinant proteins in tobacco BY-2 suspension cells","authors":"Ya Li, Juan Han, Yugu Xu, Yun Wang, Guo-peng Miao","doi":"10.1007/s11627-023-10379-9","DOIUrl":"https://doi.org/10.1007/s11627-023-10379-9","url":null,"abstract":"","PeriodicalId":13293,"journal":{"name":"In Vitro Cellular & Developmental Biology - Plant","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73093459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Başar Sevindik, Tolga İzgü, Mehmet Tütüncü, Pembe Çürük, Nebahat Sarı, Y. Mendi
{"title":"Double-haploid plant production through anther and ovule culture of wild Cyclamen persicum Mill. and Melody F1 cyclamen cultivar","authors":"Başar Sevindik, Tolga İzgü, Mehmet Tütüncü, Pembe Çürük, Nebahat Sarı, Y. Mendi","doi":"10.1007/s11627-023-10364-2","DOIUrl":"https://doi.org/10.1007/s11627-023-10364-2","url":null,"abstract":"","PeriodicalId":13293,"journal":{"name":"In Vitro Cellular & Developmental Biology - Plant","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80782264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. A. Nogueira, Vitor Rodrigues Marin, Gustavo Habermann, Jean Carlos Cardoso
{"title":"In vitro organogenesis, content phenols, and antioxidant capacity of two aluminum accumulator plant species from the Cerrado region, Brazil","authors":"M. A. Nogueira, Vitor Rodrigues Marin, Gustavo Habermann, Jean Carlos Cardoso","doi":"10.1007/s11627-023-10371-3","DOIUrl":"https://doi.org/10.1007/s11627-023-10371-3","url":null,"abstract":"","PeriodicalId":13293,"journal":{"name":"In Vitro Cellular & Developmental Biology - Plant","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90299328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An improved micropropagation protocol for the ex situ conservation of Thlaspi cariense A. Carlström (Brassicaceae): an endangered Turkish endemic plant species","authors":"Mustafa Cüce, M. Karaismailoğlu","doi":"10.1007/s11627-023-10378-w","DOIUrl":"https://doi.org/10.1007/s11627-023-10378-w","url":null,"abstract":"","PeriodicalId":13293,"journal":{"name":"In Vitro Cellular & Developmental Biology - Plant","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74251688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Priyanka Rajput, Parinita Agarwal, Pradeep K. Agarwal
{"title":"The status of in vitro regeneration and genetic transformation in the recalcitrant oil seed crop Sesamum indicum L","authors":"Priyanka Rajput, Parinita Agarwal, Pradeep K. Agarwal","doi":"10.1007/s11627-023-10374-0","DOIUrl":"https://doi.org/10.1007/s11627-023-10374-0","url":null,"abstract":"","PeriodicalId":13293,"journal":{"name":"In Vitro Cellular & Developmental Biology - Plant","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73093462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}