IEEE Transactions on Sustainable Computing最新文献

筛选
英文 中文
SCROOGEVM: Boosting Cloud Resource Utilization With Dynamic Oversubscription SCROOGEVM:利用动态超额订购提高云资源利用率
IF 3 3区 计算机科学
IEEE Transactions on Sustainable Computing Pub Date : 2024-02-23 DOI: 10.1109/TSUSC.2024.3369333
Pierre Jacquet;Thomas Ledoux;Romain Rouvoy
{"title":"SCROOGEVM: Boosting Cloud Resource Utilization With Dynamic Oversubscription","authors":"Pierre Jacquet;Thomas Ledoux;Romain Rouvoy","doi":"10.1109/TSUSC.2024.3369333","DOIUrl":"https://doi.org/10.1109/TSUSC.2024.3369333","url":null,"abstract":"Despite continuous improvements, cloud physical resources remain underused, hence severely impacting the efficiency of these infrastructures at large. To overcome this inefficiency, Infrastructure-as-a-Service (IaaS) providers usually compensate for oversized Virtual Machines (VMs) by offering more virtual resources than are physically available on a host. However, this technique—known as \u0000<italic>oversubscription</i>\u0000—may hinder performances when a statically-defined oversubscription ratio results in resource contention of hosted VMs. Therefore, instead of setting a static and cluster-wide ratio, this article studies how a greedy increase of the oversubscription ratio per Physical Machine (PM) and resources type can preserve performance goals. Keeping performance unchanged allows our contribution to be more realistically adopted by production-scale IaaS infrastructures. This contribution, named \u0000<sc>ScroogeVM</small>\u0000, leverages the detection of PM stability to carefully increase the associated oversubscription ratios. Based on metrics shared by public cloud providers, we investigate the impact of resource oversubscription on performance degradation. Subsequently, we conduct a comparative analysis of \u0000<sc>ScroogeVM</small>\u0000 with state-of-the-art oversubscription computations. The results demonstrate that our approach outperforms existing methods by leveraging the presence of long-lasting VMs, while avoiding live migration penalties and performance impacts for stakeholders.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 5","pages":"754-765"},"PeriodicalIF":3.0,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
OceanCrowd: Vessel Trajectory Data-Based Participant Selection for Mobile Crowd Sensing in Ocean Observation 海洋人群:基于船舶轨迹数据的海洋观测移动人群感知参与者选择
IF 3 3区 计算机科学
IEEE Transactions on Sustainable Computing Pub Date : 2024-02-23 DOI: 10.1109/TSUSC.2024.3369092
Shuai Guo;Menglei Xia;Huanqun Xue;Shuang Wang;Chao Liu
{"title":"OceanCrowd: Vessel Trajectory Data-Based Participant Selection for Mobile Crowd Sensing in Ocean Observation","authors":"Shuai Guo;Menglei Xia;Huanqun Xue;Shuang Wang;Chao Liu","doi":"10.1109/TSUSC.2024.3369092","DOIUrl":"https://doi.org/10.1109/TSUSC.2024.3369092","url":null,"abstract":"With the in-depth study of the internal process mechanism of the global ocean by oceanographers, traditional ocean observation methods have been unable to meet the new observation requirements. In order to achieve a low-cost ocean observation mechanism with high spatio-temporal resolution, this paper introduces mobile crowd sensing technology into the field of ocean observation. First, a Transformer-based vessel trajectory prediction algorithm is proposed, which can monitor the location and movement trajectory of vessel in real time. Second, the participant selection algorithm in mobile crowd sensing is studied, and based on the trajectory prediction algorithm, a dynamic participant selection algorithm for ocean mobile crowd sensing is proposed by combining it with the discrete particle swarm optimization (DPSO) algorithm. Third, a coverage estimation algorithm is designed to estimate the coverage of the selection scheme. Finally, the spatio-temporal resolution of the vessel's driving trajectory is analyzed through experiments, which verifies the effectiveness of the algorithm and comprehensively confirms the feasibility of mobile crowd sensing in the field of ocean observation.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 6","pages":"889-901"},"PeriodicalIF":3.0,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142810537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blockchain for Energy Credits and Certificates: A Comprehensive Review 用于能源积分和证书的区块链:全面回顾
IF 3 3区 计算机科学
IEEE Transactions on Sustainable Computing Pub Date : 2024-02-16 DOI: 10.1109/TSUSC.2024.3366502
Syed Muhammad Danish;Kaiwen Zhang;Fatima Amara;Juan Carlos Oviedo Cepeda;Luis Fernando Rueda Vasquez;Tom Marynowski
{"title":"Blockchain for Energy Credits and Certificates: A Comprehensive Review","authors":"Syed Muhammad Danish;Kaiwen Zhang;Fatima Amara;Juan Carlos Oviedo Cepeda;Luis Fernando Rueda Vasquez;Tom Marynowski","doi":"10.1109/TSUSC.2024.3366502","DOIUrl":"https://doi.org/10.1109/TSUSC.2024.3366502","url":null,"abstract":"Climate change is a major issue that has disastrous impacts on the environment through different causes like the greenhouse gas (GHG) emission. Many energy utilities around the world intend to reduce GHG emissions by promoting different systems including carbon emission trading (CET), renewable energy certificates (RECs), and tradable white certificates (TWCs). However, these systems are centralized, highly regulated, and operationally expensive and do not meet transparency, trust and security requirements. Accordingly, GHG emission reduction schemes are gradually moving towards blockchain-based solutions due to their underpinning characteristics including decentralization, transparency, anonymity, and trust (independent from third parties). This paper performs a comprehensive investigation into the blockchain technology, deployed for GHG emission reduction plans. It explores existing blockchain solutions along with their associated challenges to effectively uncover their potentials. As a result, this study suggests possible lines of research for future enhancements of blockchain systems particularly their incorporation in GHG emission reduction.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 5","pages":"727-739"},"PeriodicalIF":3.0,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DRLCAP: Runtime GPU Frequency Capping With Deep Reinforcement Learning DRLCAP:运行时 GPU 频率上限与深度强化学习
IF 3 3区 计算机科学
IEEE Transactions on Sustainable Computing Pub Date : 2024-02-06 DOI: 10.1109/TSUSC.2024.3362697
Yiming Wang;Meng Hao;Hui He;Weizhe Zhang;Qiuyuan Tang;Xiaoyang Sun;Zheng Wang
{"title":"DRLCAP: Runtime GPU Frequency Capping With Deep Reinforcement Learning","authors":"Yiming Wang;Meng Hao;Hui He;Weizhe Zhang;Qiuyuan Tang;Xiaoyang Sun;Zheng Wang","doi":"10.1109/TSUSC.2024.3362697","DOIUrl":"https://doi.org/10.1109/TSUSC.2024.3362697","url":null,"abstract":"Power and energy consumption is the limiting factor of modern computing systems. As the GPU becomes a mainstream computing device, power management for GPUs becomes increasingly important. Current works focus on GPU kernel-level power management, with challenges in portability due to architecture-specific considerations. We present \u0000<sc>DRLCap</small>\u0000, a general runtime power management framework intended to support power management across various GPU architectures. It periodically monitors system-level information to dynamically detect program phase changes and model the workload and GPU system behavior. This elimination from kernel-specific constraints enhances adaptability and responsiveness. The framework leverages dynamic GPU frequency capping, which is the most widely used power knob, to control the power consumption. \u0000<sc>DRLCap</small>\u0000 employs deep reinforcement learning (DRL) to adapt to the changing of program phases by automatically adjusting its power policy through online learning, aiming to reduce the GPU power consumption without significantly compromising the application performance. We evaluate \u0000<sc>DRLCap</small>\u0000 on three NVIDIA and one AMD GPU architectures. Experimental results show that \u0000<sc>DRLCap</small>\u0000 improves prior GPU power optimization strategies by a large margin. On average, it reduces the GPU energy consumption by 22% with less than 3% performance slowdown on NVIDIA GPUs. This translates to a 20% improvement in the energy efficiency measured by the energy-delay product (EDP) over the NVIDIA default GPU power management strategy. For the AMD GPU architecture, \u0000<sc>DRLCap</small>\u0000 saves energy consumption by 10%, on average, with a 4% percentage loss, and improves energy efficiency by 8%.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 5","pages":"712-726"},"PeriodicalIF":3.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic Outsourced Data Audit Scheme for Merkle Hash Grid-Based Fog Storage With Privacy-Preserving 具有隐私保护功能的基于 Merkle 哈希网格的雾存储动态外包数据审计方案
IF 3 3区 计算机科学
IEEE Transactions on Sustainable Computing Pub Date : 2024-02-05 DOI: 10.1109/TSUSC.2024.3362074
Ke Gu;XingQiang Wang;Xiong Li
{"title":"Dynamic Outsourced Data Audit Scheme for Merkle Hash Grid-Based Fog Storage With Privacy-Preserving","authors":"Ke Gu;XingQiang Wang;Xiong Li","doi":"10.1109/TSUSC.2024.3362074","DOIUrl":"https://doi.org/10.1109/TSUSC.2024.3362074","url":null,"abstract":"The security of fog computing has been researched and concerned with its development, where malicious attacks pose a greater threat to distributed data storage based on fog computing. Also, the rapid increasing on the number of terminal devices has raised the importance of fog computing-based distributed data storage. In response to this demand, it is essential to establish a secure and privacy-preserving distributed data auditing method that enables security protection of stored data and effective control over identities of auditors. In this paper, we propose a dynamic outsourced data audit scheme for Merkle hash grid-based fog storage with privacy-preserving, where fog servers are used to undertake partial outsourced computation and data storage. Our scheme can provide the function of privacy-preserving for outsourced data by blinding original stored data, and supports data owners to define their auditing access policies by the linear secret-sharing scheme to control the identities of auditors. Further, the construction of Merkle hash grid is used to improve the efficiency of dynamic data operations. Also, a server locating approach is proposed to enable the third-part auditor to identify specific malicious data fog servers within distributed data storage. Under the proposed security model, the security of our scheme can be proved, which can further provide collusion resistance and privacy-preserving for outsourced data. Additionally, both theoretical and experimental evaluations illustrate the efficiency of our proposed scheme.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 4","pages":"695-711"},"PeriodicalIF":3.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141965829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Battery-Aware Workflow Scheduling for Portable Heterogeneous Computing 便携式异构计算的电池感知工作流调度
IF 3 3区 计算机科学
IEEE Transactions on Sustainable Computing Pub Date : 2024-02-01 DOI: 10.1109/TSUSC.2024.3360975
Fu Jiang;Yaoxin Xia;Lisen Yan;Weirong Liu;Xiaoyong Zhang;Heng Li;Jun Peng
{"title":"Battery-Aware Workflow Scheduling for Portable Heterogeneous Computing","authors":"Fu Jiang;Yaoxin Xia;Lisen Yan;Weirong Liu;Xiaoyong Zhang;Heng Li;Jun Peng","doi":"10.1109/TSUSC.2024.3360975","DOIUrl":"https://doi.org/10.1109/TSUSC.2024.3360975","url":null,"abstract":"Battery degradation is a main hinder to extend the persistent lifespan of the portable heterogeneous computing device. Excessive energy consumption and prominent current fluctuations can lead to a sharp decline of battery endurance. To address this issue, a battery-aware workflow scheduling algorithm is proposed to maximize the battery lifetime and release the computing potential of the device fully. First, a dynamic optimal budget strategy is developed to select the highest cost-effectiveness processors to meet the deadline of each task, accelerating the budget optimization by incorporating deep neural network. Second, an integer-programming greedy strategy is utilized to determine the start time of each task, minimizing the fluctuation of the battery supply current to mitigate the battery degradation. Finally, a long-term operation experiment and Monte Carlo experiments are performed on the battery simulator, SLIDE. The experimental results under real operating conditions for more than 1800 hours validate that the proposed scheduling algorithm can effectively extend the battery life by 7.31%-8.23%. The results on various parallel workflows illustrate that the proposed algorithm has comparable performance with speed improvement over the integer programming method.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 4","pages":"677-694"},"PeriodicalIF":3.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141965765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CloudProphet: A Machine Learning-Based Performance Prediction for Public Clouds 云预言家(CloudProphet):基于机器学习的公有云性能预测
IF 3 3区 计算机科学
IEEE Transactions on Sustainable Computing Pub Date : 2024-01-29 DOI: 10.1109/TSUSC.2024.3359325
Darong Huang;Luis Costero;Ali Pahlevan;Marina Zapater;David Atienza
{"title":"CloudProphet: A Machine Learning-Based Performance Prediction for Public Clouds","authors":"Darong Huang;Luis Costero;Ali Pahlevan;Marina Zapater;David Atienza","doi":"10.1109/TSUSC.2024.3359325","DOIUrl":"https://doi.org/10.1109/TSUSC.2024.3359325","url":null,"abstract":"Computing servers have played a key role in developing and processing emerging compute-intensive applications in recent years. Consolidating multiple virtual machines (VMs) inside one server to run various applications introduces severe competence for limited resources among VMs. Many techniques such as VM scheduling and resource provisioning are proposed to maximize the cost-efficiency of the computing servers while alleviating the performance inference between VMs. However, these management techniques require accurate performance prediction of the application running inside the VM, which is challenging to get in the public cloud due to the black-box nature of the VMs. From this perspective, this paper proposes a novel machine learning-based performance prediction approach for applications running in the cloud. To achieve high-accuracy predictions for black-box VMs, the proposed method first identifies the running application inside the virtual machine. It then selects highly correlated runtime metrics as the input of the machine learning approach to accurately predict the performance level of the cloud application. Experimental results with state-of-the-art cloud benchmarks demonstrate that our proposed method outperforms existing prediction methods by more than 2× in terms of the worst prediction error. In addition, we successfully tackle the challenge of performance prediction for applications with variable workloads by introducing the performance degradation index, which other comparison methods fail to consider. The workflow versatility of the proposed approach has been verified with different modern servers and VM configurations.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 4","pages":"661-676"},"PeriodicalIF":3.0,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141965766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel Resource Management Framework for Blockchain-Based Federated Learning in IoT Networks 物联网网络中基于区块链的联盟学习的新型资源管理框架
IF 3 3区 计算机科学
IEEE Transactions on Sustainable Computing Pub Date : 2024-01-26 DOI: 10.1109/TSUSC.2024.3358915
Aman Mishra;Yash Garg;Om Jee Pandey;Mahendra K. Shukla;Athanasios V. Vasilakos;Rajesh M. Hegde
{"title":"A Novel Resource Management Framework for Blockchain-Based Federated Learning in IoT Networks","authors":"Aman Mishra;Yash Garg;Om Jee Pandey;Mahendra K. Shukla;Athanasios V. Vasilakos;Rajesh M. Hegde","doi":"10.1109/TSUSC.2024.3358915","DOIUrl":"https://doi.org/10.1109/TSUSC.2024.3358915","url":null,"abstract":"At present, the centralized learning models, used for IoT applications generating large amount of data, face several challenges such as bandwidth scarcity, more energy consumption, increased uses of computing resources, poor connectivity, high computational complexity, reduced privacy, and large latency towards data transfer. In order to address the aforementioned challenges, Blockchain-Enabled Federated Learning Networks (BFLNs) emerged recently, which deal with trained model parameters only, rather than raw data. BFLNs provide enhanced security along with improved energy-efficiency and Quality-of-Service (QoS). However, BFLNs suffer with the challenges of exponential increased action space in deciding various parameter levels towards training and block generation. Motivated by aforementioned challenges of BFLNs, in this work, we are proposing an actor-critic Reinforcement Learning (RL) method to model the Machine Learning Model Owner (MLMO) in selecting the optimal set of parameter levels, addressing the challenges of exponential grow of action space in BFLNs. Further, due to the implicit entropy exploration, actor-critic RL method balances the exploration-exploitation trade-off and shows better performance than most off-policy methods, on large discrete action spaces. Therefore, in this work, considering the mobile scenario of the devices, MLMO decides the data and energy levels that the mobile devices use for the training and determine the block generation rate. This leads to minimized system latency and reduced overall cost, while achieving the target accuracy. Specifically, we have used Proximal Policy Optimization (PPO) as an on-policy actor-critic method with it's two variants, one based on Monte Carlo (MC) returns and another based on Generalized Advantage Estimate (GAE). We analyzed that PPO has better exploration and sample efficiency, lesser training time, and consistently higher cumulative rewards, when compared to off-policy Deep Q-Network (DQN).","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 4","pages":"648-660"},"PeriodicalIF":3.0,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141965830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Prototype-Empowered Kernel-Varying Convolutional Model for Imbalanced Sea State Estimation in IoT-Enabled Autonomous Ship 一种基于原型的核变化卷积模型用于物联网自主船舶的不平衡海况估计
IF 3 3区 计算机科学
IEEE Transactions on Sustainable Computing Pub Date : 2024-01-12 DOI: 10.1109/TSUSC.2024.3353183
Mengna Liu;Xu Cheng;Fan Shi;Xiufeng Liu;Hongning Dai;Shengyong Chen
{"title":"A Prototype-Empowered Kernel-Varying Convolutional Model for Imbalanced Sea State Estimation in IoT-Enabled Autonomous Ship","authors":"Mengna Liu;Xu Cheng;Fan Shi;Xiufeng Liu;Hongning Dai;Shengyong Chen","doi":"10.1109/TSUSC.2024.3353183","DOIUrl":"https://doi.org/10.1109/TSUSC.2024.3353183","url":null,"abstract":"Sea State Estimation (SSE) is essential for Internet of Things (IoT)-enabled autonomous ships, which rely on favorable sea conditions for safe and efficient navigation. Traditional methods, such as wave buoys and radars, are costly, less accurate, and lack real-time capability. Model-driven methods, based on physical models of ship dynamics, are impractical due to wave randomness. Data-driven methods are limited by the data imbalance problem, as some sea states are more frequent and observable than others. To overcome these challenges, we propose a novel data-driven approach for SSE based on ship motion data. Our approach consists of three main components: a data preprocessing module, a parallel convolution feature extractor, and a theoretical-ensured distance-based classifier. The data preprocessing module aims to enhance the data quality and reduce sensor noise. The parallel convolution feature extractor uses a kernel-varying convolutional structure to capture distinctive features. The distance-based classifier learns representative prototypes for each sea state and assigns a sample to the nearest prototype based on a distance metric. The efficiency of our model is validated through experiments on two SSE datasets and the UEA archive, encompassing thirty multivariate time series classification tasks. The results reveal the generalizability and robustness of our approach.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 6","pages":"862-873"},"PeriodicalIF":3.0,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142810501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancements in Accelerating Deep Neural Network Inference on AIoT Devices: A Survey AIoT设备上加速深度神经网络推理的研究进展
IF 3 3区 计算机科学
IEEE Transactions on Sustainable Computing Pub Date : 2024-01-12 DOI: 10.1109/TSUSC.2024.3353176
Long Cheng;Yan Gu;Qingzhi Liu;Lei Yang;Cheng Liu;Ying Wang
{"title":"Advancements in Accelerating Deep Neural Network Inference on AIoT Devices: A Survey","authors":"Long Cheng;Yan Gu;Qingzhi Liu;Lei Yang;Cheng Liu;Ying Wang","doi":"10.1109/TSUSC.2024.3353176","DOIUrl":"https://doi.org/10.1109/TSUSC.2024.3353176","url":null,"abstract":"The amalgamation of artificial intelligence with Internet of Things (AIoT) devices have seen a rapid surge in growth, largely due to the effective implementation of deep neural network (DNN) models across various domains. However, the deployment of DNNs on such devices comes with its own set of challenges, primarily related to computational capacity, storage, and energy efficiency. This survey offers an exhaustive review of techniques designed to accelerate DNN inference on AIoT devices, addressing these challenges head-on. We delve into critical model compression techniques designed to adapt to the limitations of devices and hardware optimization strategies that aim to boost efficiency. Furthermore, we examine parallelization methods that leverage parallel computing for swift inference, as well as novel optimization strategies that fine-tune the execution process. This survey also casts a future-forward glance at emerging trends, including advancements in mobile hardware, the co-design of software and hardware, privacy and security considerations, and DNN inference on AIoT devices with constrained resources. All in all, this survey aspires to serve as a holistic guide to advancements in the acceleration of DNN inference on AIoT devices, aiming to provide sustainable computing for upcoming IoT applications driven by artificial intelligence.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 6","pages":"830-847"},"PeriodicalIF":3.0,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142810543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信