CFWS:基于 DRL 的云数据中心能源成本与碳足迹优化框架

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Daming Zhao;Jian-tao Zhou;Keqin Li
{"title":"CFWS:基于 DRL 的云数据中心能源成本与碳足迹优化框架","authors":"Daming Zhao;Jian-tao Zhou;Keqin Li","doi":"10.1109/TSUSC.2024.3391791","DOIUrl":null,"url":null,"abstract":"The rapid growth and widespread adoption of cloud computing have led to significant electricity costs and environmental impacts. Traditional approaches that rely on static utilization thresholds are ineffective in dynamic cloud environments, and simply consolidating virtual machines (VMs) to minimize energy costs does not necessarily result in the lowest carbon footprints. In this paper, a deep reinforcement learning (DRL) based framework called CFWS is proposed to enhance the energy efficiency of renewable energy sources (RES) supplied data centers (DCs). CFWS incorporates an adaptive thresholds adjustment method TCN-MAD by evaluating the predicted probability of a physical machine (PM) being overloaded to prevent unnecessary VM migrations and mitigate service level agreement (SLA) violations due to imbalanced workload distribution. Additionally, CFWS introduces a novel action space in the DRL algorithm by representing VM migrations among geo-distributed cloud data centers as flattened indices to accelerate its execution efficiency. Simulation results demonstrate that CFWS can achieve a superior optimization of energy costs and carbon footprints, saving 5.67% to 13.22% brown energy with maximized RES utilization. Furthermore, CFWS reduces VM migrations by up to 86.53% and maintains the lowest SLA violations within suboptimal execution time in comparison to the state-of-art algorithms.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"10 1","pages":"95-107"},"PeriodicalIF":3.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10506585","citationCount":"0","resultStr":"{\"title\":\"CFWS: DRL-Based Framework for Energy Cost and Carbon Footprint Optimization in Cloud Data Centers\",\"authors\":\"Daming Zhao;Jian-tao Zhou;Keqin Li\",\"doi\":\"10.1109/TSUSC.2024.3391791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid growth and widespread adoption of cloud computing have led to significant electricity costs and environmental impacts. Traditional approaches that rely on static utilization thresholds are ineffective in dynamic cloud environments, and simply consolidating virtual machines (VMs) to minimize energy costs does not necessarily result in the lowest carbon footprints. In this paper, a deep reinforcement learning (DRL) based framework called CFWS is proposed to enhance the energy efficiency of renewable energy sources (RES) supplied data centers (DCs). CFWS incorporates an adaptive thresholds adjustment method TCN-MAD by evaluating the predicted probability of a physical machine (PM) being overloaded to prevent unnecessary VM migrations and mitigate service level agreement (SLA) violations due to imbalanced workload distribution. Additionally, CFWS introduces a novel action space in the DRL algorithm by representing VM migrations among geo-distributed cloud data centers as flattened indices to accelerate its execution efficiency. Simulation results demonstrate that CFWS can achieve a superior optimization of energy costs and carbon footprints, saving 5.67% to 13.22% brown energy with maximized RES utilization. Furthermore, CFWS reduces VM migrations by up to 86.53% and maintains the lowest SLA violations within suboptimal execution time in comparison to the state-of-art algorithms.\",\"PeriodicalId\":13268,\"journal\":{\"name\":\"IEEE Transactions on Sustainable Computing\",\"volume\":\"10 1\",\"pages\":\"95-107\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10506585\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Sustainable Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10506585/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10506585/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
CFWS: DRL-Based Framework for Energy Cost and Carbon Footprint Optimization in Cloud Data Centers
The rapid growth and widespread adoption of cloud computing have led to significant electricity costs and environmental impacts. Traditional approaches that rely on static utilization thresholds are ineffective in dynamic cloud environments, and simply consolidating virtual machines (VMs) to minimize energy costs does not necessarily result in the lowest carbon footprints. In this paper, a deep reinforcement learning (DRL) based framework called CFWS is proposed to enhance the energy efficiency of renewable energy sources (RES) supplied data centers (DCs). CFWS incorporates an adaptive thresholds adjustment method TCN-MAD by evaluating the predicted probability of a physical machine (PM) being overloaded to prevent unnecessary VM migrations and mitigate service level agreement (SLA) violations due to imbalanced workload distribution. Additionally, CFWS introduces a novel action space in the DRL algorithm by representing VM migrations among geo-distributed cloud data centers as flattened indices to accelerate its execution efficiency. Simulation results demonstrate that CFWS can achieve a superior optimization of energy costs and carbon footprints, saving 5.67% to 13.22% brown energy with maximized RES utilization. Furthermore, CFWS reduces VM migrations by up to 86.53% and maintains the lowest SLA violations within suboptimal execution time in comparison to the state-of-art algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Sustainable Computing
IEEE Transactions on Sustainable Computing Mathematics-Control and Optimization
CiteScore
7.70
自引率
2.60%
发文量
54
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信