Human GenomicsPub Date : 2024-07-03DOI: 10.1186/s40246-024-00643-3
Jiaxin Li, Chenyang Zang, Hui Lv, Zheng Xiao, Peihong Li, Bo Xiao, Luo Zhou
{"title":"Association of lipid-lowering drugs with risk of sarcopenia: a drug target mendelian randomization study and meta-analysis.","authors":"Jiaxin Li, Chenyang Zang, Hui Lv, Zheng Xiao, Peihong Li, Bo Xiao, Luo Zhou","doi":"10.1186/s40246-024-00643-3","DOIUrl":"10.1186/s40246-024-00643-3","url":null,"abstract":"<p><strong>Background: </strong>Lipid-lowering drugs are widely used among the elderly, with some studies suggesting links to muscle-related symptoms. However, the causality remains uncertain.</p><p><strong>Methods: </strong>Using the Mendelian randomization (MR) approach, we assessed the causal effects of genetically proxied reduced low-density lipoprotein cholesterol (LDL-C) through inhibitions of hydroxy-methyl-glutaryl-CoA reductase (HMGCR), proprotein convertase subtilisin/kexin type 9 (PCSK9), and Niemann-Pick C1-like 1 (NPC1L1) on sarcopenia-related traits, including low hand grip strength, appendicular lean mass, and usual walking pace. A meta-analysis was conducted to combine the causal estimates from different consortiums.</p><p><strong>Results: </strong>Using LDL-C pooled data predominantly from UK Biobank, genetically proxied inhibition of HMGCR was associated with higher appendicular lean mass (beta = 0.087, P = 7.56 × 10<sup>- 5</sup>) and slower walking pace (OR = 0.918, P = 6.06 × 10<sup>- 9</sup>). In contrast, inhibition of PCSK9 may reduce appendicular lean mass (beta = -0.050, P = 1.40 × 10<sup>- 3</sup>), while inhibition of NPC1L1 showed no causal impact on sarcopenia-related traits. These results were validated using LDL-C data from Global Lipids Genetics Consortium, indicating that HMGCR inhibition may increase appendicular lean mass (beta = 0.066, P = 2.17 × 10<sup>- 3</sup>) and decelerate walking pace (OR = 0.932, P = 1.43 × 10<sup>- 6</sup>), whereas PCSK9 inhibition could decrease appendicular lean mass (beta = -0.048, P = 1.69 × 10<sup>- 6</sup>). Meta-analysis further supported the robustness of these causal associations.</p><p><strong>Conclusions: </strong>Genetically proxied HMGCR inhibition may increase muscle mass but compromise muscle function, PCSK9 inhibition could result in reduced muscle mass, while NPC1L1 inhibition is not associated with sarcopenia-related traits and this class of drugs may serve as viable alternatives to sarcopenia individuals or those at an elevated risk.</p>","PeriodicalId":13183,"journal":{"name":"Human Genomics","volume":"18 1","pages":"76"},"PeriodicalIF":3.8,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11223278/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141497918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Human GenomicsPub Date : 2024-07-02DOI: 10.1186/s40246-024-00628-2
Luping Zhang, Danya Zheng, Lian Xu, Han Wang, Shuqiang Zhang, Jianhua Shi, Nana Jin
{"title":"A novel variant in GAS2 is associated with autosomal dominant nonsyndromic hearing impairment in a Chinese family.","authors":"Luping Zhang, Danya Zheng, Lian Xu, Han Wang, Shuqiang Zhang, Jianhua Shi, Nana Jin","doi":"10.1186/s40246-024-00628-2","DOIUrl":"10.1186/s40246-024-00628-2","url":null,"abstract":"<p><p>Knockout of GAS2 (growth arrest-specific protein 2), causes disorganization and destabilization of microtubule bundles in supporting cells of the cochlear duct, leading to hearing loss in vivo. However, the molecular mechanism through which GAS2 variant results in hearing loss remains unknown. By Whole-exome sequencing, we identified a novel heterozygous splicing variant in GAS2 (c.616-2 A > G) as the only candidate mutation segregating with late-onset and progressive nonsyndromic hearing loss (NSHL) in a large dominant family. This splicing mutation causes an intron retention and produces a C-terminal truncated protein (named GAS2mu). Mechanistically, the degradation of GAS2mu via the ubiquitin-proteasome pathway is enhanced, and cells expressing GAS2mu exhibit disorganized microtubule bundles. Additionally, GAS2mu further promotes apoptosis by increasing the Bcl-xS/Bcl-xL ratio instead of through the p53-dependent pathway as wild-type GAS2 does, indicating that GAS2mu acts as a toxic molecule to exacerbate apoptosis. Our findings demonstrate that this novel variant of GAS2 promotes its own protein degradation, microtubule disorganization and cellular apoptosis, leading to hearing loss in carriers. This study expands the spectrum of GAS2 variants and elucidates the underlying pathogenic mechanisms, providing a foundation for future investigations of new therapeutic strategies to prevent GAS2-associated progressive hearing loss.</p>","PeriodicalId":13183,"journal":{"name":"Human Genomics","volume":"18 1","pages":"73"},"PeriodicalIF":3.8,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11218307/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141491737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Human GenomicsPub Date : 2024-07-02DOI: 10.1186/s40246-024-00640-6
Sonya Neto, Andreia Reis, Miguel Pinheiro, Margarida Ferreira, Vasco Neves, Teresa Costa Castanho, Nadine Santos, Ana João Rodrigues, Nuno Sousa, Manuel A S Santos, Gabriela R Moura
{"title":"Unveiling the molecular landscape of cognitive aging: insights from polygenic risk scores, DNA methylation, and gene expression.","authors":"Sonya Neto, Andreia Reis, Miguel Pinheiro, Margarida Ferreira, Vasco Neves, Teresa Costa Castanho, Nadine Santos, Ana João Rodrigues, Nuno Sousa, Manuel A S Santos, Gabriela R Moura","doi":"10.1186/s40246-024-00640-6","DOIUrl":"10.1186/s40246-024-00640-6","url":null,"abstract":"<p><strong>Background: </strong>Aging represents a significant risk factor for the occurrence of cerebral small vessel disease, associated with white matter (WM) lesions, and to age-related cognitive alterations, though the precise mechanisms remain largely unknown. This study aimed to investigate the impact of polygenic risk scores (PRS) for WM integrity, together with age-related DNA methylation, and gene expression alterations, on cognitive aging in a cross-sectional healthy aging cohort. The PRSs were calculated using genome-wide association study (GWAS) summary statistics for magnetic resonance imaging (MRI) markers of WM integrity, including WM hyperintensities, fractional anisotropy (FA), and mean diffusivity (MD). These scores were utilized to predict age-related cognitive changes and evaluate their correlation with structural brain changes, which distinguish individuals with higher and lower cognitive scores. To reduce the dimensionality of the data and identify age-related DNA methylation and transcriptomic alterations, Sparse Partial Least Squares-Discriminant Analysis (sPLS-DA) was used. Subsequently, a canonical correlation algorithm was used to integrate the three types of omics data (PRS, DNA methylation, and gene expression data) and identify an individual \"omics\" signature that distinguishes subjects with varying cognitive profiles.</p><p><strong>Results: </strong>We found a positive association between MD-PRS and long-term memory, as well as a correlation between MD-PRS and structural brain changes, effectively discriminating between individuals with lower and higher memory scores. Furthermore, we observed an enrichment of polygenic signals in genes related to both vascular and non-vascular factors. Age-related alterations in DNA methylation and gene expression indicated dysregulation of critical molecular features and signaling pathways involved in aging and lifespan regulation. The integration of multi-omics data underscored the involvement of synaptic dysfunction, axonal degeneration, microtubule organization, and glycosylation in the process of cognitive aging.</p><p><strong>Conclusions: </strong>These findings provide valuable insights into the biological mechanisms underlying the association between WM coherence and cognitive aging. Additionally, they highlight how age-associated DNA methylation and gene expression changes contribute to cognitive aging.</p>","PeriodicalId":13183,"journal":{"name":"Human Genomics","volume":"18 1","pages":"75"},"PeriodicalIF":3.8,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11221141/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141491739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Human GenomicsPub Date : 2024-07-02DOI: 10.1186/s40246-024-00636-2
Tao Chang, Yihan Wu, Xiaodong Niu, Zhiwei Guo, Jiahao Gan, Xiang Wang, Yanhui Liu, Qi Pan, Qing Mao, Yuan Yang
{"title":"The cuproptosis-related signature predicts the prognosis and immune microenvironments of primary diffuse gliomas: a comprehensive analysis.","authors":"Tao Chang, Yihan Wu, Xiaodong Niu, Zhiwei Guo, Jiahao Gan, Xiang Wang, Yanhui Liu, Qi Pan, Qing Mao, Yuan Yang","doi":"10.1186/s40246-024-00636-2","DOIUrl":"10.1186/s40246-024-00636-2","url":null,"abstract":"<p><strong>Background: </strong>Evidence has revealed a connection between cuproptosis and the inhibition of tumor angiogenesis. While the efficacy of a model based on cuproptosis-related genes (CRGs) in predicting the prognosis of peripheral organ tumors has been demonstrated, the impact of CRGs on the prognosis and the immunological landscape of gliomas remains unexplored.</p><p><strong>Methods: </strong>We screened CRGs to construct a novel scoring tool and developed a prognostic model for gliomas within the various cohorts. Afterward, a comprehensive exploration of the relationship between the CRG risk signature and the immunological landscape of gliomas was undertaken from multiple perspectives.</p><p><strong>Results: </strong>Five genes (NLRP3, ATP7B, SLC31A1, FDX1, and GCSH) were identified to build a CRG scoring system. The nomogram, based on CRG risk and other signatures, demonstrated a superior predictive performance (AUC of 0.89, 0.92, and 0.93 at 1, 2, and 3 years, respectively) in the training cohort. Furthermore, the CRG score was closely associated with various aspects of the immune landscape in gliomas, including immune cell infiltration, tumor mutations, tumor immune dysfunction and exclusion, immune checkpoints, cytotoxic T lymphocyte and immune exhaustion-related markers, as well as cancer signaling pathway biomarkers and cytokines.</p><p><strong>Conclusion: </strong>The CRG risk signature may serve as a robust biomarker for predicting the prognosis and the potential viability of immunotherapy responses. Moreover, the key candidate CRGs might be promising targets to explore the underlying biological background and novel therapeutic interventions in gliomas.</p>","PeriodicalId":13183,"journal":{"name":"Human Genomics","volume":"18 1","pages":"74"},"PeriodicalIF":3.8,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220998/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141491738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Human GenomicsPub Date : 2024-06-27DOI: 10.1186/s40246-024-00641-5
Valentina Paracchini, Mauro Petrillo, Anandasagari Arcot Rajashekar, Piotr Robuch, Ursula Vincent, Philippe Corbisier, Simona Tavazzi, Barbara Raffael, Elisabetta Suffredini, Giuseppina La Rosa, Bernd Manfred Gawlik, Antonio Marchini
{"title":"EU surveys insights: analytical tools, future directions, and the essential requirement for reference materials in wastewater monitoring of SARS-CoV-2, antimicrobial resistance and beyond.","authors":"Valentina Paracchini, Mauro Petrillo, Anandasagari Arcot Rajashekar, Piotr Robuch, Ursula Vincent, Philippe Corbisier, Simona Tavazzi, Barbara Raffael, Elisabetta Suffredini, Giuseppina La Rosa, Bernd Manfred Gawlik, Antonio Marchini","doi":"10.1186/s40246-024-00641-5","DOIUrl":"10.1186/s40246-024-00641-5","url":null,"abstract":"<p><strong>Background: </strong>Wastewater surveillance (WWS) acts as a vigilant sentinel system for communities, analysing sewage to protect public health by detecting outbreaks and monitoring trends in pathogens and contaminants. To achieve a thorough comprehension of present and upcoming practices and to identify challenges and opportunities for standardisation and improvement in WWS methodologies, two EU surveys were conducted targeting over 750 WWS laboratories across Europe and other regions. The first survey explored a diverse range of activities currently undertaken or planned by laboratories. The second survey specifically targeted methods and quality controls utilised for SARS-CoV-2 surveillance.</p><p><strong>Results: </strong>The findings of the two surveys provide a comprehensive insight into the procedures and methodologies applied in WWS. In Europe, WWS primarily focuses on SARS-CoV-2 with 99% of the survey participants dedicated to this virus. However, the responses highlighted a lack of standardisation in the methodologies employed for monitoring SARS-CoV-2. The surveillance of other pathogens, including antimicrobial resistance, is currently fragmented and conducted by only a limited number of laboratories. Notably, these activities are anticipated to expand in the future. Survey replies emphasise the collective recognition of the need to enhance the accuracy of results in WWS practices, reflecting a shared commitment to advancing precision and effectiveness in WWS methodologies.</p><p><strong>Conclusions: </strong>These surveys identified a lack of standardised common procedures in WWS practices and the need for quality standards and reference materials to enhance the accuracy and reliability of WWS methods in the future. In addition, it is important to broaden surveillance efforts beyond SARS-CoV-2 to include other emerging pathogens and antimicrobial resistance to ensure a comprehensive approach to protecting public health.</p>","PeriodicalId":13183,"journal":{"name":"Human Genomics","volume":"18 1","pages":"72"},"PeriodicalIF":3.8,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11210120/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141467537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Elucidating the role of liver enzymes as markers and regulators in ovarian cancer: a synergistic approach using Mendelian randomization, single-cell analysis, and clinical evidence.","authors":"Yinxing Zhu, Min Jiang, Zihan Gu, Hongyu Shang, Caiyin Tang, Ting Guo","doi":"10.1186/s40246-024-00642-4","DOIUrl":"10.1186/s40246-024-00642-4","url":null,"abstract":"<p><strong>Objective: </strong>To investigate the association between liver enzymes and ovarian cancer (OC), and to validate their potential as biomarkers and their mechanisms in OC. Methods Genome-wide association studies for OC and levels of enzymes such as Alkaline phosphatase (ALP), Aspartate aminotransferase (AST), Alanine aminotransferase, and gamma-glutamyltransferase were analyzed. Univariate and multivariate Mendelian randomization (MR), complemented by the Steiger test, identified enzymes with a potential causal relationship to OC. Single-cell transcriptomics from the GSE130000 dataset pinpointed pivotal cellular clusters, enabling further examination of enzyme-encoding gene expression. Transcription factors (TFs) governing these genes were predicted to construct TF-mRNA networks. Additionally, liver enzyme levels were retrospectively analyzed in healthy individuals and OC patients, alongside the evaluation of correlations with cancer antigen 125 (CA125) and Human Epididymis Protein 4 (HE4).</p><p><strong>Results: </strong>A total of 283 single nucleotide polymorphisms (SNPs) and 209 SNPs related to ALP and AST, respectively. Using the inverse-variance weighted method, univariate MR (UVMR) analysis revealed that ALP (P = 0.050, OR = 0.938) and AST (P = 0.017, OR = 0.906) were inversely associated with OC risk, suggesting their roles as protective factors. Multivariate MR (MVMR) confirmed the causal effect of ALP (P = 0.005, OR = 0.938) on OC without reverse causality. Key cellular clusters including T cells, ovarian cells, endothelial cells, macrophages, cancer-associated fibroblasts (CAFs), and epithelial cells were identified, with epithelial cells showing high expression of genes encoding AST and ALP. Notably, TFs such as TCE4 were implicated in the regulation of GOT2 and ALPL genes. OC patient samples exhibited decreased ALP levels in both blood and tumor tissues, with a negative correlation between ALP and CA125 levels observed.</p><p><strong>Conclusion: </strong>This study has established a causal link between AST and ALP with OC, identifying them as protective factors. The increased expression of the genes encoding these enzymes in epithelial cells provides a theoretical basis for developing novel disease markers and targeted therapies for OC.</p>","PeriodicalId":13183,"journal":{"name":"Human Genomics","volume":"18 1","pages":"71"},"PeriodicalIF":3.8,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11197171/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141446025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Human GenomicsPub Date : 2024-06-22DOI: 10.1186/s40246-024-00639-z
Courtney Hershberger, Arshiya Mariam, Kevin M Pantalone, John B Buse, Alison A Motsinger-Reif, Daniel M Rotroff
{"title":"Polygenic subtype identified in ACCORD trial displays a favorable type 2 diabetes phenotype in the UKBiobank population.","authors":"Courtney Hershberger, Arshiya Mariam, Kevin M Pantalone, John B Buse, Alison A Motsinger-Reif, Daniel M Rotroff","doi":"10.1186/s40246-024-00639-z","DOIUrl":"10.1186/s40246-024-00639-z","url":null,"abstract":"<p><strong>Introduction: </strong>We previously identified a genetic subtype (C4) of type 2 diabetes (T2D), benefitting from intensive glycemia treatment in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. Here, we characterized the population of patients that met the C4 criteria in the UKBiobank cohort.</p><p><strong>Research design and methods: </strong>Using our polygenic score (PS), we identified C4 individuals in the UKBiobank and tested C4 status with risk of developing T2D, cardiovascular disease (CVD) outcomes, and differences in T2D medications.</p><p><strong>Results: </strong>C4 individuals were less likely to develop T2D, were slightly older at T2D diagnosis, had lower HbA1c values, and were less likely to be prescribed T2D medications (P < .05). Genetic variants in MAS1 and IGF2R, major components of the C4 PS, were associated with fewer overall T2D prescriptions.</p><p><strong>Conclusion: </strong>We have confirmed C4 individuals are a lower risk subpopulation of patients with T2D.</p>","PeriodicalId":13183,"journal":{"name":"Human Genomics","volume":"18 1","pages":"70"},"PeriodicalIF":3.8,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11193210/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141440444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Human GenomicsPub Date : 2024-06-20DOI: 10.1186/s40246-024-00638-0
Gang Han, Dongyan Yan, Zhe Sun, Jiyuan Fang, Xinyue Chang, Lucas Wilson, Yushi Liu
{"title":"Bayesian-frequentist hybrid inference framework for single cell RNA-seq analyses.","authors":"Gang Han, Dongyan Yan, Zhe Sun, Jiyuan Fang, Xinyue Chang, Lucas Wilson, Yushi Liu","doi":"10.1186/s40246-024-00638-0","DOIUrl":"10.1186/s40246-024-00638-0","url":null,"abstract":"<p><strong>Background: </strong>Single cell RNA sequencing technology (scRNA-seq) has been proven useful in understanding cell-specific disease mechanisms. However, identifying genes of interest remains a key challenge. Pseudo-bulk methods that pool scRNA-seq counts in the same biological replicates have been commonly used to identify differentially expressed genes. However, such methods may lack power due to the limited sample size of scRNA-seq datasets, which can be prohibitively expensive.</p><p><strong>Results: </strong>Motivated by this, we proposed to use the Bayesian-frequentist hybrid (BFH) framework to increase the power and we showed in simulated scenario, the proposed BFH would be an optimal method when compared with other popular single cell differential expression methods if both FDR and power were considered. As an example, the method was applied to an idiopathic pulmonary fibrosis (IPF) case study.</p><p><strong>Conclusion: </strong>In our IPF example, we demonstrated that with a proper informative prior, the BFH approach identified more genes of interest. Furthermore, these genes were reasonable based on the current knowledge of IPF. Thus, the BFH offers a unique and flexible framework for future scRNA-seq analyses.</p>","PeriodicalId":13183,"journal":{"name":"Human Genomics","volume":"18 1","pages":"69"},"PeriodicalIF":3.8,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575015/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141431781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Human GenomicsPub Date : 2024-06-18DOI: 10.1186/s40246-024-00623-7
Diana Carolina Sierra-Díaz, Adrien Morel, Dora Janeth Fonseca-Mendoza, Nora Contreras Bravo, Nicolas Molano-Gonzalez, Mariana Borras, Isabel Munevar, Mauricio Lema, Henry Idrobo, Daniela Trujillo, Norma Serrano, Ana Isabel Orduz, Diego Lopera, Jaime González, Gustavo Rojas, Paula Londono-De Los Ríos, Ray Manneh, Rodrigo Cabrera, Wilson Rubiano, Jairo de la Peña, María Catalina Quintero, William Mantilla, Carlos M Restrepo
{"title":"Germline mutations of breast cancer susceptibility genes through expanded genetic analysis in unselected Colombian patients.","authors":"Diana Carolina Sierra-Díaz, Adrien Morel, Dora Janeth Fonseca-Mendoza, Nora Contreras Bravo, Nicolas Molano-Gonzalez, Mariana Borras, Isabel Munevar, Mauricio Lema, Henry Idrobo, Daniela Trujillo, Norma Serrano, Ana Isabel Orduz, Diego Lopera, Jaime González, Gustavo Rojas, Paula Londono-De Los Ríos, Ray Manneh, Rodrigo Cabrera, Wilson Rubiano, Jairo de la Peña, María Catalina Quintero, William Mantilla, Carlos M Restrepo","doi":"10.1186/s40246-024-00623-7","DOIUrl":"10.1186/s40246-024-00623-7","url":null,"abstract":"<p><strong>Background: </strong>In Colombia and worldwide, breast cancer (BC) is the most frequently diagnosed neoplasia and the leading cause of death from cancer among women. Studies predominantly involve hereditary and familial cases, demonstrating a gap in the literature regarding the identification of germline mutations in unselected patients from Latin-America. Identification of pathogenic/likely pathogenic (P/LP) variants is important for shaping national genetic analysis policies, genetic counseling, and early detection strategies. The present study included 400 women with unselected breast cancer (BC), in whom we analyzed ten genes, using Whole Exome Sequencing (WES), know to confer risk for BC, with the aim of determining the genomic profile of previously unreported P/LP variants in the affected population. Additionally, Multiplex Ligation-dependent Probe Amplification (MLPA) was performed to identify Large Genomic Rearrangements (LGRs) in the BRCA1/2 genes. To ascertain the functional impact of a recurrent intronic variant (ATM c.5496 + 2_5496 + 5delTAAG), a minigene assay was conducted.</p><p><strong>Results: </strong>We ascertained the frequency of P/LP germline variants in BRCA2 (2.5%), ATM (1.25%), BRCA1 (0.75%), PALB2 (0.50%), CHEK2 (0.50%), BARD1 (0.25%), and RAD51D (0.25%) genes in the population of study. P/LP variants account for 6% of the total population analyzed. No LGRs were detected in our study. We identified 1.75% of recurrent variants in BRCA2 and ATM genes. One of them corresponds to the ATM c.5496 + 2_5496 + 5delTAAG. Functional validation of this variant demonstrated a splicing alteration probably modifying the Pincer domain and subsequent protein structure.</p><p><strong>Conclusion: </strong>This study described for the first time the genomic profile of ten risk genes in Colombian women with unselected BC. Our findings underscore the significance of population-based research, advocating the consideration of molecular testing in all women with cancer.</p>","PeriodicalId":13183,"journal":{"name":"Human Genomics","volume":"18 1","pages":"68"},"PeriodicalIF":3.8,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11184794/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141418727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Human GenomicsPub Date : 2024-06-17DOI: 10.1186/s40246-024-00637-1
Xiran Zhang, Weichen Yuan, Jun Xu, Fangkun Zhao
{"title":"Application of mendelian randomization in ocular diseases: a review.","authors":"Xiran Zhang, Weichen Yuan, Jun Xu, Fangkun Zhao","doi":"10.1186/s40246-024-00637-1","DOIUrl":"10.1186/s40246-024-00637-1","url":null,"abstract":"<p><p>Ocular disorders can significantly lower patients' quality of life and impose an economic burden on families and society. However, for the majority of these diseases, their prevalence and mechanisms are yet unknown, making prevention, management, and therapy challenging. Although connections between exposure factors and diseases can be drawn through observational research, it is challenging to rule out the interference of confounding variables and reverse causation. Mendelian Randomization (MR), a method of research that combines genetics and epidemiology, has its advantage to solve this problem and thus has been extensively utilized in the etiological study of ophthalmic diseases. This paper reviews the implementation of MR in the research of ocular diseases and provides approaches for the investigation of related mechanisms as well as the intervention strategies.</p>","PeriodicalId":13183,"journal":{"name":"Human Genomics","volume":"18 1","pages":"66"},"PeriodicalIF":3.8,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11184796/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141418725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}