Integrating single-cell RNA-seq and bulk RNA-seq to construct a neutrophil prognostic model for predicting prognosis and immune response in oral squamous cell carcinoma.

IF 3.8 3区 医学 Q2 GENETICS & HEREDITY
Jinhang Wang, Zifeng Cui, Qiwen Song, Kaicheng Yang, Yanping Chen, Shixiong Peng
{"title":"Integrating single-cell RNA-seq and bulk RNA-seq to construct a neutrophil prognostic model for predicting prognosis and immune response in oral squamous cell carcinoma.","authors":"Jinhang Wang, Zifeng Cui, Qiwen Song, Kaicheng Yang, Yanping Chen, Shixiong Peng","doi":"10.1186/s40246-024-00712-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Oral squamous cell carcinoma (OSCC) is an aggressive malignancy with poor prognosis. Neutrophil infiltration has been associated with unfavorable outcomes in OSCC, but the underlying molecular mechanisms remain unclear.</p><p><strong>Methods: </strong>This study integrated single-cell transcriptomics (scRNA-seq) with bulk RNA-seq data to analyze neutrophil infiltration patterns in OSCC and identify key gene modules using weighted gene co-expression network analysis (hdWGCNA). A prognostic model was developed based on univariate and Lasso-Cox regression analyses, stratifying patients into high- and low-risk groups. Immune landscape and drug sensitivity analyses were conducted to explore group-specific differences. Additionally, Mendelian randomization analysis was employed to identify genes causally related to OSCC progression.</p><p><strong>Results: </strong>Several key pathways associated with neutrophil interactions in OSCC progression were identified, leading to the construction of a prognostic model based on significant module genes. The model demonstrated strong predictive performance in distinguishing survival rates between high- and low-risk groups. Immune landscape analysis revealed significant differences in cell infiltration patterns and TIDE scores between the groups. Drug sensitivity analysis highlighted differences in drug responsiveness between high- and low-risk groups.</p><p><strong>Conclusion: </strong>This study elucidates the critical role of neutrophils and their associated gene modules in OSCC progression. The prognostic model provides a novel reference for patient stratification and targeted therapy. These findings offer potential new targets for OSCC diagnosis, prognosis, and immunotherapy.</p>","PeriodicalId":13183,"journal":{"name":"Human Genomics","volume":"18 1","pages":"140"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11670365/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Genomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40246-024-00712-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Oral squamous cell carcinoma (OSCC) is an aggressive malignancy with poor prognosis. Neutrophil infiltration has been associated with unfavorable outcomes in OSCC, but the underlying molecular mechanisms remain unclear.

Methods: This study integrated single-cell transcriptomics (scRNA-seq) with bulk RNA-seq data to analyze neutrophil infiltration patterns in OSCC and identify key gene modules using weighted gene co-expression network analysis (hdWGCNA). A prognostic model was developed based on univariate and Lasso-Cox regression analyses, stratifying patients into high- and low-risk groups. Immune landscape and drug sensitivity analyses were conducted to explore group-specific differences. Additionally, Mendelian randomization analysis was employed to identify genes causally related to OSCC progression.

Results: Several key pathways associated with neutrophil interactions in OSCC progression were identified, leading to the construction of a prognostic model based on significant module genes. The model demonstrated strong predictive performance in distinguishing survival rates between high- and low-risk groups. Immune landscape analysis revealed significant differences in cell infiltration patterns and TIDE scores between the groups. Drug sensitivity analysis highlighted differences in drug responsiveness between high- and low-risk groups.

Conclusion: This study elucidates the critical role of neutrophils and their associated gene modules in OSCC progression. The prognostic model provides a novel reference for patient stratification and targeted therapy. These findings offer potential new targets for OSCC diagnosis, prognosis, and immunotherapy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Human Genomics
Human Genomics GENETICS & HEREDITY-
CiteScore
6.00
自引率
2.20%
发文量
55
审稿时长
11 weeks
期刊介绍: Human Genomics is a peer-reviewed, open access, online journal that focuses on the application of genomic analysis in all aspects of human health and disease, as well as genomic analysis of drug efficacy and safety, and comparative genomics. Topics covered by the journal include, but are not limited to: pharmacogenomics, genome-wide association studies, genome-wide sequencing, exome sequencing, next-generation deep-sequencing, functional genomics, epigenomics, translational genomics, expression profiling, proteomics, bioinformatics, animal models, statistical genetics, genetic epidemiology, human population genetics and comparative genomics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信