{"title":"Session details: Stochastic Systems","authors":"P. Prabhakar","doi":"10.1145/3258024","DOIUrl":"https://doi.org/10.1145/3258024","url":null,"abstract":"","PeriodicalId":131076,"journal":{"name":"Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (part of CPS Week)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129715108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jie An, N. Zhan, Xiaoshan Li, Miaomiao Zhang, W. Yi
{"title":"Model Checking Bounded Continuous-time Extended Linear Duration Invariants","authors":"Jie An, N. Zhan, Xiaoshan Li, Miaomiao Zhang, W. Yi","doi":"10.1145/3178126.3178147","DOIUrl":"https://doi.org/10.1145/3178126.3178147","url":null,"abstract":"Extended Linear Duration Invariants (ELDI), an important subset of Duration Calculus, extends well-studied Linear Duration Invariants with logical connectives and the chop modality. It is known that the model checking problem of ELDI is undecidable with both the standard continuous-time and discrete-time semantics [12, 13], but it turns out to be decidable if only bounded execution fragments of timed automata are concerned in the context of the discrete-time semantics [36]. In this paper, we prove that this problem is still decidable in the continuous-time semantics, although it is well-known that model-checking Duration Calculus with the continuous-time semantics is much more complicated than the one with the discrete-time semantics. This is achieved by reduction to the validity of Quantified Linear Real Arithmetic (QLRA). Some examples are provided to illustrate the efficiency of our approach.","PeriodicalId":131076,"journal":{"name":"Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (part of CPS Week)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128417007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Compositional Synthesis of Interconnected Stochastic Control Systems based on Finite MDPs","authors":"Abolfazl Lavaei, S. Soudjani, Majid Zamani","doi":"10.1145/3178126.3186999","DOIUrl":"https://doi.org/10.1145/3178126.3186999","url":null,"abstract":"","PeriodicalId":131076,"journal":{"name":"Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (part of CPS Week)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131905922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"State Estimation of Dynamical Systems with Unknown Inputs: Entropy and Bit Rates","authors":"Hussein Sibai, S. Mitra","doi":"10.1145/3178126.3178150","DOIUrl":"https://doi.org/10.1145/3178126.3178150","url":null,"abstract":"Finding the minimal bit rate needed for state estimation of a dynamical system is a fundamental problem in control theory. In this paper, we present a notion of topological entropy, to lower bound the bit rate needed to estimate the state of a nonlinear dynamical system, with unknown bounded inputs, up to a constant error ε. Since the actual value of this entropy is hard to compute in general, we compute an upper bound. We show that as the bound on the input decreases, we recover a previously known bound on estimation entropy - a similar notion of entropy - for nonlinear systems without inputs [10]. For the sake of computing the bound, we present an algorithm that, given sampled and quantized measurements from a trajectory and an input signal up to a time bound T > 0, constructs a function that approximates the trajectory up to an ε error up to time T. We show that this algorithm can also be used for state estimation if the input signal can indeed be sensed in addition to the state. Finally, we present an improved bound on entropy for systems with linear inputs.","PeriodicalId":131076,"journal":{"name":"Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (part of CPS Week)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116462793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Session details: Modeling and Verification","authors":"D. Ničković","doi":"10.1145/3258032","DOIUrl":"https://doi.org/10.1145/3258032","url":null,"abstract":"","PeriodicalId":131076,"journal":{"name":"Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (part of CPS Week)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114606679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improving validated computation of Viability Kernels","authors":"Benjamin Martin, Olivier Mullier","doi":"10.1145/3178126.3178141","DOIUrl":"https://doi.org/10.1145/3178126.3178141","url":null,"abstract":"The study of viability kernels can be of critical importance for the verification of control systems. A viability kernel over a set of safe states is the set of initial states for which the trajectory can be controlled so as to stay within the safe set for an indefinite amount of time. This paper investigates improvements of the rigorous method from Monnet et al. [19, 20]. This method computes an inner-approximation of the viability kernel of a continuous time control system using methods based on interval analysis. It consists of two phases: first an initial inner-approximation of the viability kernel is computed via Lyapunov-like functions; second the initial inner-approximation is improved by finding other states that can reach the inner-approximation, without exiting the safe set, using validated numerical integration. Among the improvements, we discuss an approach inspired by an interval method using barrier functions for computing a good initial inner-approximation of the viability kernel, easing the improvement phase.","PeriodicalId":131076,"journal":{"name":"Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (part of CPS Week)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131445218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Bartocci, Thomas Ferrère, Niveditha Manjunath, D. Ničković
{"title":"Localizing Faults in Simulink/Stateflow Models with STL","authors":"E. Bartocci, Thomas Ferrère, Niveditha Manjunath, D. Ničković","doi":"10.1145/3178126.3178131","DOIUrl":"https://doi.org/10.1145/3178126.3178131","url":null,"abstract":"Fault-localization is considered to be a very tedious and time-consuming activity in the design of complex Cyber-Physical Systems (CPS). This laborious task essentially requires expert knowledge of the system in order to discover the cause of the fault. In this context, we propose a new procedure that aids designers in debugging Simulink/Stateflow hybrid system models, guided by Signal Temporal Logic (STL) specifications. The proposed method relies on three main ingredients: (1) a monitoring and a trace diagnostics procedure that checks whether a tested behavior satisfies or violates an STL specification, localizes time segments and interfaces variables contributing to the property violations; (2) a slicing procedure that maps these observable behavior segments to the internal states and transitions of the Simulink model; and (3) a spectrum-based fault-localization method that combines the previous analysis from multiple tests to identify the internal states and/or transitions that are the most likely to explain the fault. We demonstrate the applicability of our approach on two Simulink models from the automotive and the avionics domain.","PeriodicalId":131076,"journal":{"name":"Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (part of CPS Week)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129889844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Formal Guarantees in Data-Driven Model Identification and Control Synthesis","authors":"Sadra Sadraddini, C. Belta","doi":"10.1145/3178126.3178145","DOIUrl":"https://doi.org/10.1145/3178126.3178145","url":null,"abstract":"For many performance-critical control systems, an accurate (simple) model is not available in practice. Thus, designing controllers with formal performance guarantees is challenging. In this paper, we develop a framework to use input-output data from an unknown system to synthesize controllers from signal temporal logic (STL) specifications. First, by imposing mild assumptions on system continuity, we find a set-valued piecewise affine (PWA) model that contains all the possible behaviors of the concrete system. Next, we introduce a novel method for STL control of PWA systems with additive disturbances. By taking advantage of STL quantitative semantics, we provide lower-bound certificates on the degree of STL satisfaction of the closed-loop concrete system. Illustrative examples are presented.","PeriodicalId":131076,"journal":{"name":"Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (part of CPS Week)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129324409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CODEV: Automated Model Predictive Control Design and Formal Verification","authors":"Nicole Chan, S. Mitra","doi":"10.1145/3178126.3187003","DOIUrl":"https://doi.org/10.1145/3178126.3187003","url":null,"abstract":"We present CODEV, a Matlab-based tool for verifying systems employing Model Predictive Control (MPC). The MPC solution is computed offline and modeled together with the physical system as a hybrid automaton, whose continuous dynamics may be nonlinear with a control solution that remains affine. While MPC is a widely used synthesis technique for constrained and optimal control in industry, our tool provides the first automated approach of analyzing these systems for rigorous guarantees of safety. This is achieved by implementing a simulation-based verification algorithm for nonlinear hybrid models, with extensions tailored to the structure of the MPC solution. Given a physical model and parameters for desired system behavior (i.e. performance and constraints), CODEV generates a control law and verifies the resulting system will robustly maintain constraints. We have applied CODEV successfully to a set of benchmark examples, which illuminates its potential to tackle more complex problems for which MPC is used.","PeriodicalId":131076,"journal":{"name":"Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (part of CPS Week)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121571657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modeling the Impact of Vehicle Platooning on Highway Congestion: A Fluid Queuing Approach","authors":"Li Jin, Mladen Čičić, Saurabh Amin, K. Johansson","doi":"10.1145/3178126.3178146","DOIUrl":"https://doi.org/10.1145/3178126.3178146","url":null,"abstract":"Vehicle platooning is a promising technology that can lead to significant fuel savings and emission reduction. However, the macroscopic impact of vehicle platoons on highway traffic is not yet well understood. In this article, we propose a new fluid queuing model to study the macroscopic interaction between randomly arriving vehicle platoons and the background traffic at highway bottlenecks. This model, viewed as a stochastic switched system, is analyzed for two practically relevant priority rules: proportional (or mixed) and segmented priority. We provide intuitive stability conditions, and obtain bounds on the long-run average length and variance of queues for both priority rules. We use these results to study how platoon-induced congestion varies with the fraction of platooned vehicles, and their characteristics such as intra-platoon spacing and arrival rate. Our analysis reveals a basic tradeoff between congestion induced by the randomness of platoon arrivals, and efficiency gain due to a tighter intra-platoon spacing. This naturally leads to conditions under which the proportional priority is preferred over segmented priority. Somewhat surprisingly, our analytical results are in agreement with the simulation results based on a more sophisticated two-class cell transmission model.","PeriodicalId":131076,"journal":{"name":"Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (part of CPS Week)","volume":"257 ","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"113990246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}