Eric S. Kim, M. Arcak, Mahmoud Khaled, Majid Zamani
{"title":"Major Computational Breakthroughs in the Synthesis of Symbolic Controllers via Decomposed Algorithms","authors":"Eric S. Kim, M. Arcak, Mahmoud Khaled, Majid Zamani","doi":"10.1145/3178126.3187005","DOIUrl":"https://doi.org/10.1145/3178126.3187005","url":null,"abstract":"ACM Reference Format: Eric S. Kim, Murat Arcak and Mahmoud Khaled, Majid Zamani. 2018. Poster: Major Computational Breakthroughs in the Synthesis of Symbolic Controllers via Decomposed Algorithms. In HSCC ’18: 21st International Conference on Hybrid Systems: Computation and Control (part of CPS Week), April 11–13, 2018, Porto, Portugal. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3178126.3187005","PeriodicalId":131076,"journal":{"name":"Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (part of CPS Week)","volume":"205 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131643778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Compositional Synthesis for Symbolic Control","authors":"A. Girard","doi":"10.1145/3178126.3196957","DOIUrl":"https://doi.org/10.1145/3178126.3196957","url":null,"abstract":"Symbolic control aims at designing \"correct by construction\" controllers for continuous dynamical systems, by using algorithmic discrete synthesis techniques. The key concept in symbolic control is that of symbolic model (also called finite abstraction), which is a finite-state dynamical system, obtained by abstracting continuous trajectories over a finite set of symbols. When the symbolic and the continuous dynamics are formally related by some behavioral relationship (e.g. simulation or bisimulation relations), controllers synthesized for the symbolic model using discrete synthesis techniques can be refined to certified controllers for the original continuous system. Computation of finite abstractions is often based on discretization of the state and input spaces and therefore the symbolic control approach suffers from scalability issues. However, the design of large systems can still be tackled by means of compositional techniques. In this talk, we will present some recent results on compositional synthesis in the symbolic control approach. Firstly, we will present an approach to compute abstractions of systems made of several, possibly overlapping components. Secondly, we will show how to synthesize decentralized (and possibly asynchronous) controllers for invariance properties, by combining these overlapping abstractions and assume-guarantee contracts. In the last part of the talk, motivated by the use of parametric assume-guarantee contracts for stability properties, we will show recent developments on abstraction-based quantitative synthesis.","PeriodicalId":131076,"journal":{"name":"Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (part of CPS Week)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116404132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ROCS: A Robustly Complete Control Synthesis Tool for Nonlinear Dynamical Systems","authors":"Yinan Li, Jun Liu","doi":"10.1145/3178126.3178153","DOIUrl":"https://doi.org/10.1145/3178126.3178153","url":null,"abstract":"This paper presents ROCS, an algorithmic control synthesis tool for nonlinear dynamical systems. Different from other formal control synthesis tools, it guarantees to generate a control strategy with respect to a robustly realizable specification for a nonlinear system. At the core of ROCS is the interval branch-and-bound scheme with a precision control parameter that reflects the robustness of the realizability of the specification. It also supports multiple variable precision control parameters to achieve higher efficiency.","PeriodicalId":131076,"journal":{"name":"Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (part of CPS Week)","volume":"171 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125989777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kyle Hsu, R. Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck
{"title":"Multi-Layered Abstraction-Based Controller Synthesis for Continuous-Time Systems","authors":"Kyle Hsu, R. Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck","doi":"10.1145/3178126.3178143","DOIUrl":"https://doi.org/10.1145/3178126.3178143","url":null,"abstract":"We present multi-layered abstraction-based controller synthesis, which extends standard abstraction-based controller synthesis (ABCS) algorithms for continuous-time control systems by simultaneously maintaining several \"layers\" of abstract systems with decreasing precision. The resulting abstract multi-layered controller uses the coarsest abstraction whenever this is feasible, and dynamically adjusts the precision---by moving to a more precise abstraction and back to a coarser abstraction---based on the structure of the given control problem. Abstract multi-layered controllers can be refined to controllers with non-uniform resolution using feedback refinement relations established between each abstract layer and the concrete system, resulting in a sound ABCS method. We provide multi-layered controller synthesis algorithms for reachability, safety, and generalized Büchi specifications; our approach can be generalized to any ω-regular objective. Our algorithms are complete relative to single-layered synthesis on the finest layer. We empirically demonstrate that multi-layered synthesis can outperform standard (single-layer) ABCS algorithms on a number of examples, despite the additional cost of constructing multiple abstract systems.","PeriodicalId":131076,"journal":{"name":"Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (part of CPS Week)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127345366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"DryVR 2.0: A tool for verification and controller synthesis of black-box cyber-physical systems","authors":"Bolun Qi, Chuchu Fan, Minghao Jiang, S. Mitra","doi":"10.1145/3178126.3187008","DOIUrl":"https://doi.org/10.1145/3178126.3187008","url":null,"abstract":"We present a demo of DryVR 2.0, a framework for verification and controller synthesis of cyber-physical systems composed of black-box simulators and white-box automata. For verification, DryVR 2.0 takes as input a black-box simulator, a white-box transition graph, a time bound and a safety specification. As output it generates over-approximations of the reachable states and returns \"Safe\" if the system meets the given bounded safety specification, or it returns \"Unsafe\" with a counter-example. For controller synthesis, DryVR 2.0 takes as input black-box simulator(s) and a reach-avoid specification, and uses RRTs to find a transition graph such that the combined system satisfies the given specification.","PeriodicalId":131076,"journal":{"name":"Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (part of CPS Week)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129287100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Session details: Reachability","authors":"S. Mitra","doi":"10.1145/3258025","DOIUrl":"https://doi.org/10.1145/3258025","url":null,"abstract":"","PeriodicalId":131076,"journal":{"name":"Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (part of CPS Week)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126364535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Efficient Parametric Identification for STL","authors":"Alexey Bakhirkin, Thomas Ferrère, O. Maler","doi":"10.1145/3178126.3178132","DOIUrl":"https://doi.org/10.1145/3178126.3178132","url":null,"abstract":"We describe a new algorithm for the parametric identification problem for signal temporal logic (STL), stated as follows. Given a dense-time real-valued signal w and a parameterized temporal logic formula φ, compute the subset of the parameter space that renders the formula satisfied by the signal. Unlike previous solutions, which were based on search in the parameter space or quantifier elimination, our procedure works recursively on φ and computes the evolution over time of the set of valid parameter assignments. This procedure is similar to that of monitoring or computing the robustness of φ relative to w. Our implementation and experiments demonstrate that this approach can work well in practice.","PeriodicalId":131076,"journal":{"name":"Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (part of CPS Week)","volume":"109 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122203480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Session details: Algorithms and Foundations","authors":"Sicun Gao","doi":"10.1145/3258031","DOIUrl":"https://doi.org/10.1145/3258031","url":null,"abstract":"","PeriodicalId":131076,"journal":{"name":"Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (part of CPS Week)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131763616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Global Almost-Sure Reachability in Stochastic Constant-Rate Multi-Mode Systems","authors":"F. Somenzi, B. Touri, Ashutosh Trivedi","doi":"10.1145/3178126.3178149","DOIUrl":"https://doi.org/10.1145/3178126.3178149","url":null,"abstract":"A constant-rate multi-mode system is a hybrid system that can switch freely among a finite set of modes, and whose dynamics is specified by a finite number of real-valued variables with mode-dependent constant rates. We introduce and study a stochastic extension of a constant-rate multi-mode system where the dynamics is specified by mode-dependent compactly supported probability distributions over a set of constant rate vectors. The almost-sure reachability problem for stochastic multi-mode systems is to decide whether for all ε > 0 and for all pairs of start and target states in a path-connected and bounded safety set there exists a control strategy that almost-surely steers the system from the start state to the ε-neighborhood of the target state without leaving the safety set. We prove a necessary and sufficient condition to decide almost-sure reachability and, using this condition, we show that almost-sure reachability can be decided in polynomial time. Our algorithm can be used as a path-following algorithm in combination with off-the-shelf path-planning algorithms to make a robot with noisy low-level controllers follow a path with arbitrary precision.","PeriodicalId":131076,"journal":{"name":"Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (part of CPS Week)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132336481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Formal Controller Synthesis from Hybrid Programs","authors":"V. Sinyakov, A. Girard","doi":"10.1145/3178126.3186998","DOIUrl":"https://doi.org/10.1145/3178126.3186998","url":null,"abstract":"We consider a new way of describing complex control problems for dynamic systems called hybrid programs. Hybrid program is a finite state automaton whose states describe elementary tasks of reachability and safety defined on a transition system ([3, 5]). The proposed approach to complex control problems description could be seen as an alternative to linear temporal logic (see e.g. [1]). We provide an example to illustrate the approach.","PeriodicalId":131076,"journal":{"name":"Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (part of CPS Week)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115061005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}