多项式连续系统的精确和近似线性抽象算法

Michele Boreale
{"title":"多项式连续系统的精确和近似线性抽象算法","authors":"Michele Boreale","doi":"10.1145/3178126.3178137","DOIUrl":null,"url":null,"abstract":"A polynomial continuous system S = (F,X0) is specified by a polynomial vector field F and a set of initial conditions X0. We study polynomial changes of bases that transform S into a linear system, called linear abstractions. We first give a complete algorithm to find all such abstractions that fit a user-specified template. This requires taking into account the algebraic structure of the set X0, which we do by working modulo an appropriate invariant ideal. Next, we give necessary and sufficient syntactic conditions under which a full linear abstraction exists, that is one capable of representing the behaviour of the individual variables in the original system. We then propose an approximate linearization and dimension-reduction technique, that is amenable to be implemented \"on the fly\". We finally illustrate the encouraging results of a preliminary experimentation with the linear abstraction algorithm, conducted on challenging systems drawn from the literature.","PeriodicalId":131076,"journal":{"name":"Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (part of CPS Week)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Algorithms for exact and approximate linear abstractions of polynomial continuous systems\",\"authors\":\"Michele Boreale\",\"doi\":\"10.1145/3178126.3178137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A polynomial continuous system S = (F,X0) is specified by a polynomial vector field F and a set of initial conditions X0. We study polynomial changes of bases that transform S into a linear system, called linear abstractions. We first give a complete algorithm to find all such abstractions that fit a user-specified template. This requires taking into account the algebraic structure of the set X0, which we do by working modulo an appropriate invariant ideal. Next, we give necessary and sufficient syntactic conditions under which a full linear abstraction exists, that is one capable of representing the behaviour of the individual variables in the original system. We then propose an approximate linearization and dimension-reduction technique, that is amenable to be implemented \\\"on the fly\\\". We finally illustrate the encouraging results of a preliminary experimentation with the linear abstraction algorithm, conducted on challenging systems drawn from the literature.\",\"PeriodicalId\":131076,\"journal\":{\"name\":\"Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (part of CPS Week)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (part of CPS Week)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3178126.3178137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (part of CPS Week)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3178126.3178137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

多项式连续系统S = (F,X0)由多项式向量场F和一组初始条件X0表示。我们研究将S转换成线性系统的基的多项式变化,称为线性抽象。我们首先给出了一个完整的算法来找到所有适合用户指定模板的抽象。这需要考虑集合X0的代数结构,我们通过对一个适当的不变理想求模来实现。其次,我们给出了存在完全线性抽象的充分必要句法条件,即能够表示原始系统中单个变量的行为。然后,我们提出了一种近似线性化和降维技术,可以“在飞行中”实现。我们最后说明了线性抽象算法的初步实验的令人鼓舞的结果,从文献中提取具有挑战性的系统进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algorithms for exact and approximate linear abstractions of polynomial continuous systems
A polynomial continuous system S = (F,X0) is specified by a polynomial vector field F and a set of initial conditions X0. We study polynomial changes of bases that transform S into a linear system, called linear abstractions. We first give a complete algorithm to find all such abstractions that fit a user-specified template. This requires taking into account the algebraic structure of the set X0, which we do by working modulo an appropriate invariant ideal. Next, we give necessary and sufficient syntactic conditions under which a full linear abstraction exists, that is one capable of representing the behaviour of the individual variables in the original system. We then propose an approximate linearization and dimension-reduction technique, that is amenable to be implemented "on the fly". We finally illustrate the encouraging results of a preliminary experimentation with the linear abstraction algorithm, conducted on challenging systems drawn from the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信