IEEE Journal of Biomedical and Health Informatics最新文献

筛选
英文 中文
Biomedical Information Integration via Adaptive Large Language Model Construction. 通过自适应大型语言模型构建实现生物医学信息整合。
IF 6.7 2区 医学
IEEE Journal of Biomedical and Health Informatics Pub Date : 2024-11-11 DOI: 10.1109/JBHI.2024.3496495
Xingsi Xue, Mu-En Wu, Fazlullah Khan
{"title":"Biomedical Information Integration via Adaptive Large Language Model Construction.","authors":"Xingsi Xue, Mu-En Wu, Fazlullah Khan","doi":"10.1109/JBHI.2024.3496495","DOIUrl":"https://doi.org/10.1109/JBHI.2024.3496495","url":null,"abstract":"<p><p>Integrating diverse biomedical knowledge information is essential to enhance the accuracy and efficiency of medical diagnoses, facilitate personalized treatment plans, and ultimately improve patient outcomes. However, Biomedical Information Integration (BII) faces significant challenges due to variations in terminology and the complex structure of entity descriptions across different datasets. A critical step in BII is biomedical entity alignment, which involves accurately identifying and matching equivalent entities across diverse datasets to ensure seamless data integration. In recent years, Large Language Model (LLMs), such as Bidirectional Encoder Representations from Transformers (BERTs), have emerged as valuable tools for discerning heterogeneous biomedical data due to their deep contextual embeddings and bidirectionality. However, different LLMs capture various nuances and complexity levels within the biomedical data, and none of them can ensure their effectiveness in all heterogeneous entity matching tasks. To address this issue, we propose a novel Two-Stage LLM construction (TSLLM) framework to adaptively select and combine LLMs for Biomedical Information Integration (BII). First, a Multi-Objective Genetic Programming (MOGP) algorithm is proposed for generating versatile high-level LLMs, and then, a Single-Objective Genetic Algorithm (SOGA) employs a confidence-based strategy is presented to combine the built LLMs, which can further improve the discriminative power of distinguishing heterogeneous entities. The experiment utilizes OAEI's entity matching datasets, i.e., Benchmark and Conference, along with LargeBio, Disease and Phenotype datasets to test the performance of TSLLM. The experimental findings validate the efficiency of TSLLM in adaptively differentiating heterogeneous biomedical entities, which significantly outperforms the leading entity matching techniques.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142619297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional Data Analysis of Hand Rotation for Open Surgical Suturing Skill Assessment. 用于开放手术缝合技能评估的手部旋转功能数据分析。
IF 6.7 2区 医学
IEEE Journal of Biomedical and Health Informatics Pub Date : 2024-11-11 DOI: 10.1109/JBHI.2024.3496122
Amir Mehdi Shayan, David B Hitchcock, Simar Singh, Jianxin Gao, Richard E Groff, Ravikiran B Singapogu
{"title":"Functional Data Analysis of Hand Rotation for Open Surgical Suturing Skill Assessment.","authors":"Amir Mehdi Shayan, David B Hitchcock, Simar Singh, Jianxin Gao, Richard E Groff, Ravikiran B Singapogu","doi":"10.1109/JBHI.2024.3496122","DOIUrl":"https://doi.org/10.1109/JBHI.2024.3496122","url":null,"abstract":"<p><p>This study explores the application of functional data analysis (FDA) to hand roll velocity during radial suturing on the SutureCoach bench simulator for evaluating open suturing performance. By treating temporal sensor data as mathematical functions, FDA provides a holistic view of the dynamic changes in hand roll, offering comprehensive assessments that are easily interpretable and clinically relevant. Cluster analysis was performed on hand roll profiles from 96 subjects, categorized into advanced surgeons, trainee surgeons, and novices. Functional k-means, using dynamic time-warping to align curves, were used to partition the data into two preset numbers of clusters (3 and 6). Both clustering models (3-cluster and 6-cluster) effectively clustered performance into groups with distinct characteristics and levels of skill (evident from visual inspection of cluster centroids). The relationship between cluster membership and suturing skills was corroborated using proxy measures of skill: expert global rating scale ratings, clinical status and expertise, and simulator-derived metrics. The findings of this study offer valuable insight into essential components of suturing skill and can improve the autonomy and efficiency of simulation-based suturing training. The clinical relevance of our results is immediately pertinent to the field of surgical skill assessment, where FDA-based methods could potentially be employed for objective feedback and training.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142619303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiclass Classification Framework of Motor Imagery EEG by Riemannian Geometry Networks. 利用黎曼几何网络对运动意象脑电图进行多级分类的框架。
IF 6.7 2区 医学
IEEE Journal of Biomedical and Health Informatics Pub Date : 2024-11-11 DOI: 10.1109/JBHI.2024.3496757
Yuxuan Shi, Aimin Jiang, Ju Zhong, Min Li, Yanping Zhu
{"title":"Multiclass Classification Framework of Motor Imagery EEG by Riemannian Geometry Networks.","authors":"Yuxuan Shi, Aimin Jiang, Ju Zhong, Min Li, Yanping Zhu","doi":"10.1109/JBHI.2024.3496757","DOIUrl":"https://doi.org/10.1109/JBHI.2024.3496757","url":null,"abstract":"<p><p>In motor imagery (MI) tasks for brain computer interfaces (BCIs), the spatial covariance matrix (SCM) of electroencephalogram (EEG) signals plays a critical role in accurate classification. Given that SCMs are symmetric positive definite (SPD), Riemannian geometry is widely utilized to extract classification features. However, calculating distances between SCMs is computationally intensive due to operations like eigenvalue decomposition, and classical optimization techniques, such as gradient descent, cannot be directly applied to Riemannian manifolds, making the computation of the Riemannian mean more complex and reliant on iterative methods or approximations. In this paper, we propose a novel multiclass classification framework that integrates Riemannian geometry and neural networks to mitigate these challenges. The framework comprises two modules: a Riemannian module with multiple branches and a classification module. During training, a fusion loss function is introduced to update the branch corresponding to the true label, while other branches are updated using different loss functions along with the classification module. Comprehensive experiments on four sets of MI EEG data demonstrate the efficiency and effectiveness of the proposed model.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142619321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Personalized Video-Based Hand Taxonomy Using Egocentric Video in the Wild. 利用野外以自我为中心的视频进行基于视频的个性化手分类学研究
IF 6.7 2区 医学
IEEE Journal of Biomedical and Health Informatics Pub Date : 2024-11-11 DOI: 10.1109/JBHI.2024.3495699
Mehdy Dousty, David J Fleet, Jose Zariffa
{"title":"Personalized Video-Based Hand Taxonomy Using Egocentric Video in the Wild.","authors":"Mehdy Dousty, David J Fleet, Jose Zariffa","doi":"10.1109/JBHI.2024.3495699","DOIUrl":"https://doi.org/10.1109/JBHI.2024.3495699","url":null,"abstract":"<p><strong>Objective: </strong>Hand function is central to inter- actions with our environment. Developing a comprehen- sive model of hand grasps in naturalistic environments is crucial across various disciplines, including robotics, ergonomics, and rehabilitation. Creating such a taxonomy poses challenges due to the significant variation in grasp- ing strategies that individuals may employ. For instance, individuals with impaired hands, such as those with spinal cord injuries (SCI), may develop unique grasps not used by unimpaired individuals. These grasping techniques may differ from person to person, influenced by variable senso- rimotor impairment, creating a need for personalized meth- ods of analysis.</p><p><strong>Method: </strong>This study aimed to automatically identify the dominant distinct hand grasps for each indi- vidual without reliance on a priori taxonomies, by applying semantic clustering to egocentric video. Egocentric video recordings collected in the homes of 19 individual with cervical SCI were used to cluster grasping actions with semantic significance. A deep learning model integrating posture and appearance data was employed to create a per- sonalized hand taxonomy.</p><p><strong>Results: </strong>Quantitative analysis reveals a cluster purity of 67.6% ± 24.2% with 18.0% ± 21.8% redundancy. Qualitative assessment revealed meaningful clusters in video content.</p><p><strong>Discussion: </strong>This methodology provides a flexible and effective strategy to analyze hand function in the wild, with applications in clinical assess- ment and in-depth characterization of human-environment interactions in a variety of contexts.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142619325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Zero-Shot Medical Phrase Grounding with Off-the-shelf Diffusion Models. 利用现成的扩散模型实现医疗词组的零点接地。
IF 6.7 2区 医学
IEEE Journal of Biomedical and Health Informatics Pub Date : 2024-11-08 DOI: 10.1109/JBHI.2024.3494246
Konstantinos Vilouras, Pedro Sanchez, Alison Q O'Neil, Sotirios A Tsaftaris
{"title":"Zero-Shot Medical Phrase Grounding with Off-the-shelf Diffusion Models.","authors":"Konstantinos Vilouras, Pedro Sanchez, Alison Q O'Neil, Sotirios A Tsaftaris","doi":"10.1109/JBHI.2024.3494246","DOIUrl":"https://doi.org/10.1109/JBHI.2024.3494246","url":null,"abstract":"<p><p>Localizing the exact pathological regions in a given medical scan is an important imaging problem that traditionally requires a large amount of bounding box ground truth annotations to be accurately solved. However, there exist alternative, potentially weaker, forms of supervision, such as accompanying free-text reports, which are readily available. The task of performing localization with textual guidance is commonly referred to as phrase grounding. In this work, we use a publicly available Foundation Model, namely the Latent Diffusion Model, to perform this challenging task. This choice is supported by the fact that the Latent Diffusion Model, despite being generative in nature, contains cross-attention mechanisms that implicitly align visual and textual features, thus leading to intermediate representations that are suitable for the task at hand. In addition, we aim to perform this task in a zero-shot manner, i.e., without any training on the target task, meaning that the model's weights remain frozen. To this end, we devise strategies to select features and also refine them via post-processing without extra learnable parameters. We compare our proposed method with state-of-the-art approaches which explicitly enforce image-text alignment in a joint embedding space via contrastive learning. Results on a popular chest X-ray benchmark indicate that our method is competitive with SOTA on different types of pathology, and even outperforms them on average in terms of two metrics (mean IoU and AUC-ROC). Source code will be released upon acceptance at https://github.com/vios-s.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing In Silico Clinical Trials for Regulatory Adoption and Innovation. 推进硅学临床试验,促进法规采纳和创新。
IF 6.7 2区 医学
IEEE Journal of Biomedical and Health Informatics Pub Date : 2024-11-08 DOI: 10.1109/JBHI.2024.3486538
Georgia Karanasiou, Elazer Edelman, Francois-Henri Boissel, Robert Byrne, Luca Emili, Martin Fawdry, Nenad Filipovic, David Flynn, Liesbet Geris, Alfons Hoekstra, Maria Cristina Jori, Ali Kiapour, Dejan Krsmanovic, Thierry Marchal, Flora Musuamba, Francesco Pappalardo, Lorenza Petrini, Markus Reiterer, Marco Viceconti, Klaus Zeier, Lampros K Michalis, Dimitrios I Fotiadis
{"title":"Advancing In Silico Clinical Trials for Regulatory Adoption and Innovation.","authors":"Georgia Karanasiou, Elazer Edelman, Francois-Henri Boissel, Robert Byrne, Luca Emili, Martin Fawdry, Nenad Filipovic, David Flynn, Liesbet Geris, Alfons Hoekstra, Maria Cristina Jori, Ali Kiapour, Dejan Krsmanovic, Thierry Marchal, Flora Musuamba, Francesco Pappalardo, Lorenza Petrini, Markus Reiterer, Marco Viceconti, Klaus Zeier, Lampros K Michalis, Dimitrios I Fotiadis","doi":"10.1109/JBHI.2024.3486538","DOIUrl":"https://doi.org/10.1109/JBHI.2024.3486538","url":null,"abstract":"<p><p>The evolution of information and communication technologies has affected all fields of science, including health sciences. However, the rate of technological innovation adoption by the healthcare sector has been historically slow, compared to other industrial sectors. Innovation in computer modeling and simulation approaches has changed the landscape in biomedical applications and biomedicine, paving the way for their potential contribution in reducing, refining, and partially replacing animal and human clinical trials. In Silico Clinical Trials (ISCT) allow the development of virtual populations used in the safety and efficacy testing of new drugs and medical devices. This White Paper presents the current framework for ISCT, the role of in silico medicine research communities, the different perspectives (research, scientific, clinical, regulatory, standardization, data quality, legal and ethical), the barriers, challenges, and opportunities for ISCT adoption. In addition, an overview of successful ISCT projects, market-available platforms, and FDA- approved paradigms, along with their vision, mission and outcomes are presented.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PointCHD: A Point Cloud Benchmark for Congenital Heart Disease Classification and Segmentation. PointCHD:用于先天性心脏病分类和分割的点云基准。
IF 6.7 2区 医学
IEEE Journal of Biomedical and Health Informatics Pub Date : 2024-11-08 DOI: 10.1109/JBHI.2024.3495035
Dinghao Yang, Wei Gao
{"title":"PointCHD: A Point Cloud Benchmark for Congenital Heart Disease Classification and Segmentation.","authors":"Dinghao Yang, Wei Gao","doi":"10.1109/JBHI.2024.3495035","DOIUrl":"https://doi.org/10.1109/JBHI.2024.3495035","url":null,"abstract":"<p><p>Congenital heart disease (CHD) is one of the most common birth defects. With the development of medical imaging analysis technology, medical image analysis for CHD has become an important research direction. Due to the lack of data and the difficulty of labeling, CHD datasets are scarce. Previous studies focused on CT and other medical image modes, while point cloud is still unstudied. As a representative type of 3D data, point cloud can intuitively model organ shapes, which has obvious advantages in medical analysis and can assist doctors in diagnosis. However, the production of a medical point cloud dataset is more complex than that of an image dataset, and the 3D modeling of internal organs needs to be reconstructed after scanning by high-precision instruments. We propose PointCHD, the first point cloud dataset for CHD diagnosis, with a large number of high precision-annotated and wide-categorized data. PointCHD includes different types of three-dimensional data with varying degrees of distortion, and supports multiple analysis tasks, i.e. classification, segmentation, reconstruction, etc. We also construct a benchmark on PointCHD with the goal of medical diagnosis, we design the analysis process and compare the performances of the mainstream point cloud analysis methods. In view of the complex internal and external structure of the heart point cloud, we propose a point cloud representation learning method based on manifold learning. By introducing normal lines to consider the continuity of the surface to construct a manifold learning method of the adaptive projection plane, fully extracted the structural features of the heart, and achieved the best performance on each task of the PointCHD benchmark. Finally, we summarize the existing problems in the analysis of the CHD point cloud and prospects for potential research directions in the future. The benchmark will be released soon.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Silico Modeling and Validation of the Effect of Calcium-Activated Potassium Current on Ventricular Repolarization in Failing Myocytes. 钙激活钾电流对衰竭肌细胞心室复极化影响的硅学建模和验证
IF 6.7 2区 医学
IEEE Journal of Biomedical and Health Informatics Pub Date : 2024-11-08 DOI: 10.1109/JBHI.2024.3495027
Marta Gomez, Jesus Carro, Esther Pueyo, Alba Perez, Aida Olivan, Violeta Monasterio
{"title":"In Silico Modeling and Validation of the Effect of Calcium-Activated Potassium Current on Ventricular Repolarization in Failing Myocytes.","authors":"Marta Gomez, Jesus Carro, Esther Pueyo, Alba Perez, Aida Olivan, Violeta Monasterio","doi":"10.1109/JBHI.2024.3495027","DOIUrl":"https://doi.org/10.1109/JBHI.2024.3495027","url":null,"abstract":"<p><strong>Objective: </strong>The pathophysiological role of the small conductance calcium-activated potassium (SK) channels in human ventricular myocytes remains unclear. Experimental studies have reported upregulation of in pathological states, potentially contributing to ventricular arrhythmias. In heart failure (HF) patients, the upregulation of SK channels could be an adaptive physiological response to shorten the action potential duration (APD) under conditions of reduced repolarization reserve. In this work, we aimed at uncovering the contribution of SK channels to ventricular repolarization in failing myocytes.</p><p><strong>Methods: </strong>We extended an in silico electrophysiological model of human ventricular failing myocytes by including a representation of the SK channel activity. To calibrate the maximal SK current conductance (G <sub>SK</sub>), we simulated action potentials (APs) at different pacing frequencies and matched the changes in AP duration induced by SK channel inhibition or activation to available experimental data.</p><p><strong>Results: </strong>The optimal value obtained for G<sub>SK</sub> was 4.288 μ S/ μF in mid-myocardial cells, and 6.4 μS/ μF for endocardial and epicardial cells. The simulated SK block-induced effects were consistent with experimental evidence. 1-D simulations of a transmural ventricular fiber indicated that SK channel block may prolong the QT interval and increase the transmural dispersion of repolarization, potentially increasing the risk of arrhythmia in HF.</p><p><strong>Conclusion: </strong>Our results highlight the importance of considering the SK channels to improve the characterization of HF-induced ventricular remodeling. Simulations across various scenarios in 0-D and 1-D scales suggest that pharmacological SK channel inhibition could lead to adverse effects in failing ventricles.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
M-NET: Transforming Single Nucleotide Variations into Patient Feature Images for the Prediction of Prostate Cancer Metastasis and Identification of Significant Pathways. M-NET:将单核苷酸变异转化为患者特征图像,以预测前列腺癌转移并识别重要途径。
IF 6.7 2区 医学
IEEE Journal of Biomedical and Health Informatics Pub Date : 2024-11-07 DOI: 10.1109/JBHI.2024.3493618
Li Zhou, Jie Li, Weilong Tan
{"title":"M-NET: Transforming Single Nucleotide Variations into Patient Feature Images for the Prediction of Prostate Cancer Metastasis and Identification of Significant Pathways.","authors":"Li Zhou, Jie Li, Weilong Tan","doi":"10.1109/JBHI.2024.3493618","DOIUrl":"https://doi.org/10.1109/JBHI.2024.3493618","url":null,"abstract":"<p><p>High-performance prediction of prostate cancer metastasis based on single nucleotide variations remains a challenge. Therefore, we developed a novel biologically informed deep learning framework, named M-NET, for the prediction of prostate cancer metastasis. Within the framework, we transformed single nucleotide variations into patient feature images that are optimal for fitting convolutional neural networks. Moreover, we identified significant pathways associated with the metastatic status. The experimental results showed that M-NET significantly outperformed other comparison methods based on single nucleotide variations, achieving improvements in accuracy, precision, recall, F1-score, area under the receiver operating characteristics curve, and area under the precision-recall curve by 6.3%, 8.4%, 5.1%, 0.070, 0.041, and 0.026, respectively. Furthermore, M-NET identified some important pathways associated with the metastatic status, such as signaling by the hedgehog pathway. In summary, compared with other comparative methods, M-NET exhibited a better performance in the prediction of prostate cancer metastasis.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Incremental Classification for High-Dimensional EEG Manifold Representation Using Bidirectional Dimensionality Reduction and Prototype Learning. 利用双向降维和原型学习对高维脑电图图谱表示进行增量分类
IF 6.7 2区 医学
IEEE Journal of Biomedical and Health Informatics Pub Date : 2024-11-07 DOI: 10.1109/JBHI.2024.3491096
Dongxu Liu, Qichuan Ding, Chenyu Tong, Jinshuo Ai, Fei Wang
{"title":"Incremental Classification for High-Dimensional EEG Manifold Representation Using Bidirectional Dimensionality Reduction and Prototype Learning.","authors":"Dongxu Liu, Qichuan Ding, Chenyu Tong, Jinshuo Ai, Fei Wang","doi":"10.1109/JBHI.2024.3491096","DOIUrl":"https://doi.org/10.1109/JBHI.2024.3491096","url":null,"abstract":"<p><p>In brain-computer interface (BCI) systems, symmetric positive definite (SPD) manifold within Riemannian space has been frequently utilized to extract spatial features from electroencephalogram (EEG) signals. However, the intrinsic high dimensionality of SPD matrices introduces too much computational burden to hinder the real-time applications of such BCI, especially in handling dynamic tasks, like incremental learning. Directly reducing the dimensionality of SPD matrices with conventional dimensionality reduction (DR) methods will alter the fundamental properties of SPD matrices. Moreover, current DR methods for incremental learning always necessitate retaining old data to update their representations under new mapping. To this end, a bidirectional two-dimensional principal component analysis for SPD manifold (B2DPCA-SPD) is proposed to reduce the dimensionality of SPD matrices, in such way that the reduced matrices remain on SPD manifold. Afterwards, the B2DPCA-SPD is extended to adapt to incremental learning tasks without saving old data. The incremental B2DPCA-SPD can be seamlessly integrated with the matrix-formed growing neural gas network (MF-GNG) to achieve an incremental EEG classification, where the new low-dimensional representations of the prototypes in old classifiers can be easily recalculated with the updated projection matrix. Extensive experiments are conducted on two public datasets to perform the EEG classification. The results demonstrate that our method significantly reduces computation time by 38.53% and 35.96%, and outperforms conventional methods in classification accuracy by 4.21% to 19.59%.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信