{"title":"Genetic Mapping for Leaf Shape and Leaf Size in Non-Heading Chinese Cabbage by a RIL Population","authors":"Tianzi Zhao, Aimei Bai, Xinya Wang, Feixue Zhang, Miaomiao Yang, Yuhui Wang, Tongkun Liu, Xilin Hou, Ying Li","doi":"10.3390/horticulturae10050529","DOIUrl":"https://doi.org/10.3390/horticulturae10050529","url":null,"abstract":"Leaves are the predominant photosynthetic and edible organs in non-heading Chinese cabbage (Brassica campestris ssp. chinensis, NHCC), contributing significantly to yield, appearance, and desirability to consumers. However, the genetic basis of leaf shape and size in non-heading Chinese cabbage remains unclear. In this study, we developed a RIL population using ‘Maertou’, with slender leaves and narrow petioles, and ‘Suzhouqing’, with oval leaves and wide petioles, to construct a genetic linkage map and detect QTLs. To obtain stable and reliable QTLs, the 11 leaf-related traits, including the leaf length, leaf width, and fresh weight of the lamina and petiole and the thickness of petiole was observed on two locations—while the leaf shape, petiole shape, index of lamina/petiole length, and index of petiole fresh weight were calculated based on 7 leaf-related traits. QTL mapping illustrated that a total of 27 QTLs for leaf-related traits were preliminarily detected. The candidate genes were annotated and several genes involved in leaf development and leaf shape appeared in the overlapping regions of multiple loci, such as KRP2, GRF4, ARGOS, and SAUR9. This study lays the foundation for further exploration of the genetic mechanisms and development of effective molecular markers for leaf shape and size in NHCC.","PeriodicalId":13034,"journal":{"name":"Horticulturae","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141122548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HorticulturaePub Date : 2024-05-19DOI: 10.3390/horticulturae10050525
Ornprapa Thepsilvisut, Nuengruethai Srikan, Preuk Chutimanukul, D. Athinuwat, W. Chuaboon, Rusama Marubodee, Hiroshi Ehara
{"title":"Practical Guidelines for Farm Waste Utilization in Sustainable Kale Production","authors":"Ornprapa Thepsilvisut, Nuengruethai Srikan, Preuk Chutimanukul, D. Athinuwat, W. Chuaboon, Rusama Marubodee, Hiroshi Ehara","doi":"10.3390/horticulturae10050525","DOIUrl":"https://doi.org/10.3390/horticulturae10050525","url":null,"abstract":"Natural amendments from agricultural waste to improve soil physicochemical properties continuously attract research interest in promoting eco-friendly plant production. The present study evaluated the proper use of sawdust, biochar, and compost made from farm waste for kale production from seedling propagation to field conditions. From the seedling propagation process, the results demonstrate that the most suitable growing medium for kale seedings was 0.5:1:1 v/v of sawdust + biochar + compost, which gave the fastest mean germination times (2.71 days) and the highest seed germination percentage (78.33%). In addition to investigating the selected growing media as the soil amendments at five different rates (0, 6.25, 12.50, 18.75, 25.00, and 31.25 t ha−1), the result reveals that the fresh weight of marketable leaves was significantly highest under the 31.25 t ha−1 treatment. The application rate that yielded the highest gross profit margins was eight times higher than the control. Moreover, in some harvesting periods, the kale leaf yields under the treatment of 31.25 t ha−1 showed higher total chlorophyll and carotenoid contents.","PeriodicalId":13034,"journal":{"name":"Horticulturae","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141124312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HorticulturaePub Date : 2024-05-19DOI: 10.3390/horticulturae10050526
Feiyun Huang, Yifei Lu, Zi Li, Lang Zhang, Minqiu Xie, Bi Ren, Liming Lu, Liqin Li, Cui Yang
{"title":"Overexpression of CBL-Interacting Protein Kinases 23 Improves Tolerance to Low-Nitrogen Stress in Potato Plants","authors":"Feiyun Huang, Yifei Lu, Zi Li, Lang Zhang, Minqiu Xie, Bi Ren, Liming Lu, Liqin Li, Cui Yang","doi":"10.3390/horticulturae10050526","DOIUrl":"https://doi.org/10.3390/horticulturae10050526","url":null,"abstract":"CBL-interacting protein kinases (CIPKs) play important regulatory roles in plant growth development and abiotic stress tolerance. However, the biological roles of these genes in response to low-nitrate (LN) stress in potato plants have not been determined. Here, we reported that StCIPK23 was expressed mainly in roots and leaves. StCIPK23 was located mainly in the cell membrane, nucleus, and cytoplasm. Further research suggested that, compared with wild-type (WT) plants, StCIPK23-overexpressing plants were taller and had significantly greater nitrate and ammonium nitrogen contents under LN stress. StCIPK23 overexpression can increase StAT, StNRT2.1, StNR, StGS1-3, and StGOGAT expression levels in StCIPK23 transgenic seedlings compared to those in WT plants under LN stress. The results of yeast two-hybrid and luciferase complementation imaging experiments suggested that StCIPK23 could interact with StCBL3. Real-time reverse transcription–PCR revealed the StCIPK23 expression level peaked at 6 h and the StCBL3 expression level peaked at 9 h in the roots under LN stress. In conclusion, we found that StCIPK23 and StCBL3 form a complex to regulate the expression of key genes in the nitrogen metabolism pathway to improve LN tolerance in potato plants.","PeriodicalId":13034,"journal":{"name":"Horticulturae","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141124640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HorticulturaePub Date : 2024-05-18DOI: 10.3390/horticulturae10050524
Qian Yin, Zhongfei Pan, Yanmin Li, H. Xiong, Joseph Masabni, Deyi Yuan, Fengmei Zou
{"title":"Pollen and Floral Organ Morphology of 18 Oil-Tea Genotypes and Its Systematic Significance","authors":"Qian Yin, Zhongfei Pan, Yanmin Li, H. Xiong, Joseph Masabni, Deyi Yuan, Fengmei Zou","doi":"10.3390/horticulturae10050524","DOIUrl":"https://doi.org/10.3390/horticulturae10050524","url":null,"abstract":"Oil-tea belongs to the Camellia genus, an important oil crop in China. However, oil-tea is taxonomically challenging due to its morphological variation, polyploidy, and interspecific hybridization. Therefore, the present study aimed to investigate the flower organs’ morphology and pollen micro-morphology of 18 oil-tea genotypes in detail and discussed their significance for oil-tea taxonomy. The quantitative parameters of flowers were measured using Vernier caliper measurements. Pollen morphology was observed and photographed using scanning electron microscopy (SEM). The results indicated that the flower size varied significantly among the tested oil-tea genotypes, with the corolla diameter ranging from 42.25 μm in C. meiocarpa ‘LP’ to 89.51 μm in C. oleifera ‘ASX09’. The pollen grains of oil-tea are monads and medium grade in pollen size. There were two types of polar views, including triangular or subcircular, with a polar axis length (P) ranging from 27.5 μm in C. oleifera ‘CY67’ to 59.04 μm in C. mairei (H. Lév.) Melch. var. lapidea (Y.C. Wu) Sealy. The equatorial views exhibited oblate, spherical, or oblong shapes, with an equatorial axis length (E) of 21.32 to 41.62 μm. The pollen exine sculpture was perforate, verrucate, and reticulate. The perforation lumina diameter (D) ranged from 0.29 μm in C. magniflora Chang to 1.22 μm in C. yuhsienensis Hu, and the perforation width (W) varied from 0.77 μm in C. osmantha to 1.40 μm in C. gauchowensis ‘HM349’, respectively. Qualitative clustering analysis (Q-type cluster) and principal component analysis (PCA) were conducted using eleven indexes of flower and pollen morphology, and the 18 oil-tea genotypes were classified into three categories. In addition, the correlation analysis showed that there was a significant correlation between pollen size and flower morphology or pollen exine sculpture. These results offer valuable information on the classification and identification of the 18 oil-tea germplasm resources.","PeriodicalId":13034,"journal":{"name":"Horticulturae","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141124985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HorticulturaePub Date : 2024-05-18DOI: 10.3390/horticulturae10050523
J. Muñoz-Redondo, Francisco Juli á n Cuevas, José Carlos Montenegro, J. Ordóñez-Díaz, J. Moreno-Rojas
{"title":"An Updated Isotopic Database of Fertilizers Used in Intensive Organic Farming: A Case Study on Protein Hydrolyzed Derivatives and Chelated Nutrients","authors":"J. Muñoz-Redondo, Francisco Juli á n Cuevas, José Carlos Montenegro, J. Ordóñez-Díaz, J. Moreno-Rojas","doi":"10.3390/horticulturae10050523","DOIUrl":"https://doi.org/10.3390/horticulturae10050523","url":null,"abstract":"The global demand for organic food products has rapidly increased over the last years, becoming an emerging niche market targeting the high-income segment. The higher retailing price for organic food products may increase the risk of fraudulent practices at the different stages of the food supply chain, and consequently, substantial control is needed. Currently, the authentication of organic food products, such as those of plant origin, remains a key challenge in analytical chemistry. While stable isotopes have emerged as a powerful tool for this purpose, most studies have focused on crops, missing the agricultural inputs used for fertilization that influence the isotopic values of the crops. In this study, we aimed to isotopically characterize commonly used fertilizers, soil conditioners, and micronutrient fertilizers in intensive organic agriculture in the largest organic production region in the world (Almería, Spain). Our goal was to clarify the limitations that nitrogen isotopic fingerprinting presents for the fertilizer input industry and to characterize the organic inputs. The conventional fertilizers analyzed in this study showed low δ15N values compared to their organic counterparts, except for some plant-based fertilizers, protein hydrolyzed fertilizers, and chelated nutrients. Both protein hydrolyzed fertilizers and micronutrient fertilizers presented a wide range of variability in their δ15N values, including some very low or even negative values, more similar to those of conventional fertilizers. The results of this study highlight the challenges of authenticating organic foods in agriculture when using nitrogen isotope analysis.","PeriodicalId":13034,"journal":{"name":"Horticulturae","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141125660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HorticulturaePub Date : 2024-05-17DOI: 10.3390/horticulturae10050519
Bin Wang, Hua Yang, Lili Li, Shujuan Zhang
{"title":"Non-Destructive Detection of Cerasus Humilis Fruit Quality by Hyperspectral Imaging Combined with Chemometric Method","authors":"Bin Wang, Hua Yang, Lili Li, Shujuan Zhang","doi":"10.3390/horticulturae10050519","DOIUrl":"https://doi.org/10.3390/horticulturae10050519","url":null,"abstract":"Cerasus Humilis fruit is susceptible to rapid color changes post-harvest, which degrades its quality. This research utilized hyperspectral imaging technology to detect and visually analyze the soluble solid content (SSC) and firmness of the fruit, aiming to improve quality and achieve optimal pricing. Four maturity stages (color turning stage, coloring stage, maturity stage, and fully ripe stage) of Cerasus Humilis fruit were examined using hyperspectral images (895–1700 nm) alongside data collection on SSC and firmness. These samples were divided into a calibration set and a validation set with a ratio of 3:1 by sample set partitioning based on the joint X-Y distances (SPXY) method. The original spectral data was processed by a spectral preprocessing method. Multiple linear regression (MLR) and nonlinear least squares support vector machine (LS-SVM) detection models were established using feature wavelengths selected by the successive projections algorithm (SPA), competitive adaptive reweighted sampling (CARS), uninformative variable elimination (UVE), and two combined downscaling algorithms (UVE-SPA and UVE-CARS), respectively. For SSC and firmness detection, the best models were the SNV-SPA-LS-SVM model with 18 feature wavelengths and the original spectra-UVE-CARS-LS-SVM model with eight feature wavelengths, respectively. For SSC, the correlation coefficient of prediction (Rp) was 0.8526, the root mean square error of prediction (RMSEP) was 0.9703, and the residual prediction deviation (RPD) was 1.9017. For firmness, Rp was 0.7879, RMSEP was 1.1205, and RPD was 2.0221. Furthermore, the optimal model was employed to retrieve the distribution of SSC and firmness within Cerasus Humilis fruit. This retrieved information facilitated visual inspection, enabling a more intuitive and comprehensive assessment of SSC and firmness at each pixel level. These findings demonstrated the effectiveness of hyperspectral imaging technology for determining SSC and firmness in Cerasus Humilis fruit. This paves the way for online monitoring of fruit quality, ultimately facilitating timely harvesting.","PeriodicalId":13034,"journal":{"name":"Horticulturae","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141126860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HorticulturaePub Date : 2024-05-17DOI: 10.3390/horticulturae10050522
Yidan Zhang, Tianli Guo, Jingyuan Li, Libo Jiang, Na Wang
{"title":"Tomato (Solanum lycopersicum L.) YTH Domain-Containing RNA-Binding Protein (YTP) Family Members Participate in Low-Temperature Treatment and Waterlogging Stress Responses","authors":"Yidan Zhang, Tianli Guo, Jingyuan Li, Libo Jiang, Na Wang","doi":"10.3390/horticulturae10050522","DOIUrl":"https://doi.org/10.3390/horticulturae10050522","url":null,"abstract":"YT521-B homology (YTH) domain-containing RNA-binding proteins (YTPs) are important N6-methyladenosine (m6A) readers that have crucial roles in determining the destiny of m6A-modified RNAs, which are the most widespread RNA modifications in eukaryotes. Tomatoes (Solanum lycopersicum L.) hold significant importance in both dietary consumption patterns and scientific inquiries. While the YTP gene family has been characterized in tomatoes, their specific reactions to the low temperature and waterlogging stresses remain to be elucidated. In our study, nine tomato SlYTPs could be divided into five subclasses, YTHDFa-c and YTHDCa-b. After gene cloning and measuring their expression levels under stress conditions, it was revealed that SlYTP8 exhibited increased sensitivity to low-temperature treatment, while the expression levels of SlYTP9 were notably upregulated in leaf tissues subjected to waterlogging conditions. As members of the YTHDFc subfamily, SlYTP8 and SlYTP9 are both localized in the cytoplasm. Nevertheless, overexpression (OE) of SlYTP8 increased the sensitivity of tomato plants to low-temperature treatment, which was manifested by a higher accumulation of malondialdehyde (MDA) and hydrogen peroxide (H2O2) and a weaker reactive oxygen species scavenging ability compared to wild-type (WT) tomatoes. However, in comparison to WT plants, the leaves of SlYTP9 OE tomatoes showed higher chlorophyll content and a stronger reactive oxygen species scavenging ability after 3 days of waterlogging treatment, thereby increasing the resistance of tomatoes to waterlogging stress. Moreover, in order to investigate the possible molecular mechanisms underlying their responses to the low temperature and waterlogging stresses, the transcription factors and interacting protein networks associated with SlYTP8/9 promoters and proteins were also predicted, respectively. These results could fill the gap in the understanding of tomato YTPs in response to the low temperature and waterlogging stresses, while also providing a theoretical and experimental basis for subsequent studies on their molecular mechanisms.","PeriodicalId":13034,"journal":{"name":"Horticulturae","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141126502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HorticulturaePub Date : 2024-05-17DOI: 10.3390/horticulturae10050521
Amine Elbouzidi, Mohamed Taibi, Abdellah Baraich, Mounir Haddou, E. Loukili, A. Asehraou, François Mesnard, M. Addi
{"title":"Enhancing Secondary Metabolite Production in Pelargonium graveolens Hort. Cell Cultures: Eliciting Effects of Chitosan and Jasmonic Acid on Bioactive Compound Production","authors":"Amine Elbouzidi, Mohamed Taibi, Abdellah Baraich, Mounir Haddou, E. Loukili, A. Asehraou, François Mesnard, M. Addi","doi":"10.3390/horticulturae10050521","DOIUrl":"https://doi.org/10.3390/horticulturae10050521","url":null,"abstract":"This study explores the effects of chitosan (CHT) and jasmonic acid (JA) elicitors on rose-scented geranium (Pelargonium graveolens Hort.) cell suspension cultures, aiming to enhance the production of phenolics and flavonoids and antioxidant properties. Elicitation with CHT and JA resulted in varied biomass yields and callus characteristics, with higher concentrations generally leading to increased phenolic accumulation. Optimal biomass was achieved with CHT4 (75 mg/mL) and JA3 (50 µM) treatments. HPLC-DAD analysis revealed changes in phenolic compound composition and quantities, with specific compounds induced by either CHT4 or JA3. For instance, gallic acid content increased significantly in CHT4-treated cells, while catechin content increased notably in both CHT4 and JA3 treatments. Antioxidant enzyme activities like superoxide dismutase and peroxidase increased with elicitor concentration, particularly in CHT4 and JA3 treatments. Both treatments exhibited potent antioxidant activity, with JA3 exhibiting the lowest IC50 value in the DPPH assay and highest total antioxidant capacity (TAC) values. Surprisingly, both CHT4 and JA3 extracts effectively inhibited tyrosinase activity. These findings underscore the efficacy of CHT and JA elicitors in enhancing phenolic and flavonoid production, boosting antioxidant capacity, and inhibiting tyrosinase activity in P. graveolens cultures, offering promising implications for further research and industrial applications in pharmaceutical and cosmetic sectors.","PeriodicalId":13034,"journal":{"name":"Horticulturae","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140963212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Jasmonates Play an Important Role in Differential Accumulation of Key Oolong Tea Aromas in Two Tea Varieties (Camellia sinensis)","authors":"Xin-Lei Li, Hui-Li Deng, Yu-Cheng Zheng, Xiang-Rui Kong, Qiu-sheng Zhong, Xiao-mei You, Rui-yang Shan, Zheng-He Lin, Zhi-Hui Chen, Chang-Song Chen","doi":"10.3390/horticulturae10050520","DOIUrl":"https://doi.org/10.3390/horticulturae10050520","url":null,"abstract":"Aroma is an important factor in the measurement of the quality and market value of oolong tea. However, it is hard to develop an oolong tea with good aroma quality using unsuitable tea varieties. To explore the key factors of tea varieties in the formation of oolong tea aromas, the fresh leaves of the Chungui variety (CG, suitable for oolong tea, Camellia sinensis (L.) O. Kuntze) and the Fuyun No. 6 variety (F6, unsuitable for oolong tea, Camellia sinensis (L.) O. Kuntze) were harvested and treated by withering and mechanical stress in order. Then, aroma, transcriptome, and jasmonate (JA) contents, and weighted gene co-expression network analysis (WGCNA), of samples were investigated. The contents of characteristic oolong tea aromas, including indole, (E)-β-ocimene, (E)-nerolidol, α-farnesene, and jasmine lactone, were all accumulated in much higher quantities in the CG variety after withering and mechanical stress. Accordingly, the coding genes of aroma formation synthases TSB2, OCS, NES, AFS, and LOX1, and related genes in MVA, MEP, and ALA pathways, were all much more highly activated. These differential reactions are mainly caused by the higher accumulation of jasmonates, especially methyl jasmonate, a type of important plant signal chemical, in CG after mechanical stress. WGCNA analysis indicated 34 different transcription factors from different families are predicted to be involved in this jasmonate-responsive reaction.","PeriodicalId":13034,"journal":{"name":"Horticulturae","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140966153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HorticulturaePub Date : 2024-05-17DOI: 10.3390/horticulturae10050518
A. Tallarita, E. Cozzolino, Antonio Salluzzo, A. Sękara, R. Pokluda, O. Murariu, L. Vecchietti, Luisa del Piano, Pasquale Lombardi, A. Cuciniello, G. Caruso
{"title":"Effect of Transplanting Time and Nitrogen–Potassium Ratio on Yield, Growth, and Quality of Cauliflower Landrace Gigante di Napoli in Southern Italy","authors":"A. Tallarita, E. Cozzolino, Antonio Salluzzo, A. Sękara, R. Pokluda, O. Murariu, L. Vecchietti, Luisa del Piano, Pasquale Lombardi, A. Cuciniello, G. Caruso","doi":"10.3390/horticulturae10050518","DOIUrl":"https://doi.org/10.3390/horticulturae10050518","url":null,"abstract":"Research has been increasingly focusing on the preservation of the biodiversity of vegetable crops under sustainable farming management. An experiment was carried out in southern Italy on Brassica oleracea L. var. botrytis, landrace Gigante di Napoli, to assess the effects of two transplanting times (9 September and 7 October), in factorial combination with five nitrogen–potassium ratios (0.6; 0.8; 1.0; 1.2; and 1.4) on plant growth, yield, and quality of cauliflower heads. A split-plot design was used for the treatment distribution in the field, with three replications. The earlier transplant and the 1.2 N:K ratio led to the highest yield, mean weight, and firmness of cauliflower heads which were not significantly affected by both transplanting time and N:K ratio in terms of colour components. The 1.2 N:K ratio led to the highest head diameter with the earlier transplant, whereas the 1.0 ratio was the most effective on this parameter in the later crop cycle. The highest nitrate, nitrogen, and potassium concentrations in the heads were recorded with the earlier transplanting time. Antioxidant activity, ascorbic acid, and polyphenol content increased with the rise of the N:K ratio. The element use efficiency was constantly negative with the N:K increase for nitrogen and was augmented until the 1.2 ratio for potassium. The results of our investigation showed that the optimal combination between transplanting time and N:K ratio is a key aspect to improve head yield and quality of the cauliflower landrace Gigante di Napoli, under the perspective of biodiversity safeguarding and valorisation.","PeriodicalId":13034,"journal":{"name":"Horticulturae","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140963971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}