{"title":"On the theory of three-dimensional optical solitons","authors":"R. Mishaev, E. Teplitsky","doi":"10.1088/0954-8998/4/5/007","DOIUrl":"https://doi.org/10.1088/0954-8998/4/5/007","url":null,"abstract":"Exact solutions of three-dimensional equations for optical solitons with allowance for non-linearity dispersion and fifth order non-linearity have been obtained. It is also demonstrated that the solutions can be found only if the energy exchange between the central and peripheral parts of the optical pulse is taken into account.","PeriodicalId":130003,"journal":{"name":"Quantum Optics: Journal of The European Optical Society Part B","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1992-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123684124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The optical double resonance spectrum of an atom in a squeezed field","authors":"S. Smart, S. Swain","doi":"10.1088/0954-8998/4/5/004","DOIUrl":"https://doi.org/10.1088/0954-8998/4/5/004","url":null,"abstract":"The authors consider a three-level atom in the ladder configuration, which interacts with two classical, monochromatic electromagnetic fields. The laser driving the mod 0) to mod 1) transition is intense, whilst the laser connecting the mod 1) to mod 2) transition is weak. In addition, a squeezed vacuum field is centered on the mod 0) to mod 1) transition. They calculate the optical double resonance spectrum for this system, and show that it depends very sensitively on the squeezing phase and degree of squeezing. Normally the ODR spectrum consists of two peaks, but when the population trapping condition of Courty and Reynaud (1989) is satisfied, one of the peaks disappears. The observation of the ODR spectrum could provide a means of detecting a squeezed field.","PeriodicalId":130003,"journal":{"name":"Quantum Optics: Journal of The European Optical Society Part B","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1992-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115242064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Compensation of self-phase modulation in a QND measurement of photon number based on the optical Kerr effect","authors":"H. Martens, W. D. Muynck","doi":"10.1088/0954-8998/4/5/006","DOIUrl":"https://doi.org/10.1088/0954-8998/4/5/006","url":null,"abstract":"The authors study a quantum non-demolition (QND) set-up for the measurement of photon number, employing the optical Kerr effect. A method for the compensation of the negative effects of self-phase modulation is discussed. Losses are taken into account. It is seen that the performance of the device is limited in the first place by losses, rather than by self-phase modulation.","PeriodicalId":130003,"journal":{"name":"Quantum Optics: Journal of The European Optical Society Part B","volume":"33 4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1992-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126148559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Discrete superpositions of coherent states and phase properties of the m-photon anharmonic oscillator","authors":"M. Paprzycka, R. Tanas","doi":"10.1088/0954-8998/4/5/008","DOIUrl":"https://doi.org/10.1088/0954-8998/4/5/008","url":null,"abstract":"The formation of discrete superpositions of coherent states via the unitary evolution of the m-photon anharmonic oscillator is studied. Exact analytical formulae for the superposition coefficients are obtained. It is shown that, in contrast to the two-photon anharmonic oscillator, for m>2 the superposition components enter the superposition with different amplitudes. The Pegg-Barnett phase formalism is used to calculate the phase distributions for the resulting states and to visualize their symmetry.","PeriodicalId":130003,"journal":{"name":"Quantum Optics: Journal of The European Optical Society Part B","volume":"140 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1992-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114433700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Simple approach for discussing the properties of displaced Fock states","authors":"F. Hong-yi, Weng Hai-guang","doi":"10.1088/0954-8998/4/5/001","DOIUrl":"https://doi.org/10.1088/0954-8998/4/5/001","url":null,"abstract":"With the use of the technique of integration within an ordered product (IWOP) the authors provide a mathematically concise approach for deriving some properties of the displaced Fock states which simplify the previous calculations of Wunsche ibid., vol.3, p.359, 1991. The displaced Fock state representation of the Wigner operator is derived by using the fact that the displaced Fock state is the eigenstate of the Wigner operator.","PeriodicalId":130003,"journal":{"name":"Quantum Optics: Journal of The European Optical Society Part B","volume":"2012 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1992-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128068168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantum states of the light for dynamic diffraction in the DFB system","authors":"A. Alodjants, S. Arakelian, Y. Chilingarian","doi":"10.1088/0954-8998/4/4/002","DOIUrl":"https://doi.org/10.1088/0954-8998/4/4/002","url":null,"abstract":"A new method of formation of quantum states of the light in a system with non-linear dynamic diffraction is discussed for the first time. The squeezed states of the light are obtained for two geometries (Bragg and Laue) of non-linear diffraction in a spatially periodic medium. The approach also gives new opportunities for the experimental verification of the quantum properties of the light.","PeriodicalId":130003,"journal":{"name":"Quantum Optics: Journal of The European Optical Society Part B","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1992-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131099694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thermal photon distributions in the Jaynes-Cummings model","authors":"W. S. Liu, P. Tombesi","doi":"10.1088/0954-8998/4/4/004","DOIUrl":"https://doi.org/10.1088/0954-8998/4/4/004","url":null,"abstract":"The thermal photon statistics of the Jaynes-Cummings model are derived. The thermodynamics of the field-atom system in equilibrium is also studied.","PeriodicalId":130003,"journal":{"name":"Quantum Optics: Journal of The European Optical Society Part B","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1992-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124508054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Number and phase quantum fluctuations in the down-conversion with a quantum pump","authors":"R. Tanas, Ts. Gantsog","doi":"10.1088/0954-8998/4/4/005","DOIUrl":"https://doi.org/10.1088/0954-8998/4/4/005","url":null,"abstract":"The photon number and phase quantum fluctuations in the field produced by the down-conversion process with a quantum pump are studied. The fully quantum approach using the method of numerical diagonalization of the interaction Hamiltonian is applied to find the evolution of the system. The evolution of the photon number fluctuations, the joint number of photons probability distribution, the quadrature variances, the joint phase probability distribution, the marginal number and phase distributions for the signal mode, the number and phase uncertainty products and squeezing parameters are calculated and illustrated graphically. The results for the signal mode are compared to the corresponding results for the ideal squeezed vacuum to show the range of validity of the parametric approximation.","PeriodicalId":130003,"journal":{"name":"Quantum Optics: Journal of The European Optical Society Part B","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1992-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114308181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantum fluctuations do not annihilate the optical soliton","authors":"D. Kouznetsov","doi":"10.1088/0954-8998/4/4/003","DOIUrl":"https://doi.org/10.1088/0954-8998/4/4/003","url":null,"abstract":"The behaviour of optical solitons in non-linear fibres with dispersion is discussed. The possibility of quantum decay of the fundamental soliton is investigated. The evolution of the second-order correlation function is analysed. A theorem on the evolution of the fourth-order correlation function is presented. It provides the proof of the stability of the fundamental soliton.","PeriodicalId":130003,"journal":{"name":"Quantum Optics: Journal of The European Optical Society Part B","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1992-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117260949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Squeezing in the Schrodinger picture: normal ordering technique to solve the mass-varying oscillator","authors":"A. L. D. Brito, B. Baseia","doi":"10.1088/0954-8998/4/4/001","DOIUrl":"https://doi.org/10.1088/0954-8998/4/4/001","url":null,"abstract":"Recent papers by Cheng and Fung (1988) and Lo (1990) have studied the generation of squeezed states out of coherent states in systems described by some time-dependent Hamiltonians. They have employed the evolution operator method for the Schrodinger equation with a Hamiltonian expressible as H(t)=al(t)J++a2(t)J0++a3 (t)J-, where J+-,J0 are the SU(2) group generators. Here, for the sake of comparison of methods and results, the present authors employ the normal ordered Hamiltonian H(t)= Sigma hl,m(t)(a)lam and investigate squeezing through an alternative approach using the normal ordering technique to solve the evolution operator for the same system.","PeriodicalId":130003,"journal":{"name":"Quantum Optics: Journal of The European Optical Society Part B","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1992-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115158514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}