Squeezing in the Schrodinger picture: normal ordering technique to solve the mass-varying oscillator

A. L. D. Brito, B. Baseia
{"title":"Squeezing in the Schrodinger picture: normal ordering technique to solve the mass-varying oscillator","authors":"A. L. D. Brito, B. Baseia","doi":"10.1088/0954-8998/4/4/001","DOIUrl":null,"url":null,"abstract":"Recent papers by Cheng and Fung (1988) and Lo (1990) have studied the generation of squeezed states out of coherent states in systems described by some time-dependent Hamiltonians. They have employed the evolution operator method for the Schrodinger equation with a Hamiltonian expressible as H(t)=al(t)J++a2(t)J0++a3 (t)J-, where J+-,J0 are the SU(2) group generators. Here, for the sake of comparison of methods and results, the present authors employ the normal ordered Hamiltonian H(t)= Sigma hl,m(t)(a)lam and investigate squeezing through an alternative approach using the normal ordering technique to solve the evolution operator for the same system.","PeriodicalId":130003,"journal":{"name":"Quantum Optics: Journal of The European Optical Society Part B","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Optics: Journal of The European Optical Society Part B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/0954-8998/4/4/001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Recent papers by Cheng and Fung (1988) and Lo (1990) have studied the generation of squeezed states out of coherent states in systems described by some time-dependent Hamiltonians. They have employed the evolution operator method for the Schrodinger equation with a Hamiltonian expressible as H(t)=al(t)J++a2(t)J0++a3 (t)J-, where J+-,J0 are the SU(2) group generators. Here, for the sake of comparison of methods and results, the present authors employ the normal ordered Hamiltonian H(t)= Sigma hl,m(t)(a)lam and investigate squeezing through an alternative approach using the normal ordering technique to solve the evolution operator for the same system.
薛定谔图中的压缩:求解变质量振子的正序技术
Cheng和Fung(1988)和Lo(1990)最近的论文研究了由一些时变哈密顿量描述的系统中相干态的挤压态的产生。他们采用演化算子方法求解了薛定谔方程,其哈密顿量可表示为H(t)=al(t)J++a2(t)J0++a3 (t)J-,其中J+-,J0为SU(2)群生成子。在这里,为了比较方法和结果,本文作者采用正规有序哈密顿量H(t)= Sigma hl,m(t)(a)lam,并通过一种使用正规有序技术的替代方法来研究挤压,以解决同一系统的演化算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信