HeredityPub Date : 2024-03-27DOI: 10.1038/s41437-024-00680-7
Takumi Yokomizo, Yuma Takahashi
{"title":"Plasticity of circadian and circatidal rhythms in activity and transcriptomic dynamics in a freshwater snail","authors":"Takumi Yokomizo, Yuma Takahashi","doi":"10.1038/s41437-024-00680-7","DOIUrl":"10.1038/s41437-024-00680-7","url":null,"abstract":"Organisms have diverse biological clocks synchronised with environmental cycles depending on their habitats. Anticipation of tidal changes has driven the evolution of circatidal rhythms in some marine species. In the freshwater snail, Semisulcospira reiniana, individuals in nontidal areas exhibit circadian rhythms, whereas those in tidal areas exhibit both circadian and circatidal rhythms. We investigated whether the circatidal rhythms are genetically determined or induced by environmental cycles. The exposure to a simulated tidal cycle did not change the intensity of circatidal rhythm in individuals in the nontidal population. However, snails in the tidal population showed different activity rhythms depending on the presence or absence of the exposure. Transcriptome analysis revealed that genes with circatidal oscillation increased due to entrainment to the tidal cycle in both populations and dominant rhythmicity was consistent with the environmental cycle. These results suggest plasticity in the endogenous rhythm in the gene expression in both populations. Note that circatidal oscillating genes were more abundant in the tidal population than in the nontidal population, suggesting that a greater number of genes are associated with circatidal clocks in the tidal population compared to the nontidal population. This increase of circatidal clock–controlled genes in the tidal population could be caused by genetic changes in the biological clock or the experience of tidal cycle in the early life stage. Our findings suggest that the plasticity of biological rhythms may have contributed to the adaptation to the tidal environment in S. reiniana.","PeriodicalId":12991,"journal":{"name":"Heredity","volume":"132 5","pages":"267-274"},"PeriodicalIF":3.8,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41437-024-00680-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140305473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HeredityPub Date : 2024-03-27DOI: 10.1038/s41437-024-00681-6
Erika C. Johnston, Carlo Caruso, Elena Mujica, Nia S. Walker, Crawford Drury
{"title":"Complex parental effects impact variation in larval thermal tolerance in a vertically transmitting coral","authors":"Erika C. Johnston, Carlo Caruso, Elena Mujica, Nia S. Walker, Crawford Drury","doi":"10.1038/s41437-024-00681-6","DOIUrl":"10.1038/s41437-024-00681-6","url":null,"abstract":"Coral populations must be able to adapt to changing environmental conditions for coral reefs to persist under climate change. The adaptive potential of these organisms is difficult to forecast due to complex interactions between the host animal, dinoflagellate symbionts and the environment. Here we created 26 larval families from six Montipora capitata colonies from a single reef, showing significant, heritable variation in thermal tolerance. Our results indicate that 9.1% of larvae are expected to exhibit four times the thermal tolerance of the general population. Differences in larval thermotolerance were driven mainly by maternal contributions, but we found no evidence that these effects were driven by symbiont identity despite vertical transmission from the dam. We also document no evidence of reproductive incompatibility attributable to symbiont identity. These data demonstrate significant genetic variation within this population which provides the raw material upon which natural selection can act.","PeriodicalId":12991,"journal":{"name":"Heredity","volume":"132 6","pages":"275-283"},"PeriodicalIF":3.8,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41437-024-00681-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140305472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HeredityPub Date : 2024-03-20DOI: 10.1038/s41437-024-00679-0
Guan-Yu Chen, Shih-Ying Huang, Ming-Der Lin, Thomas Chouvenc, Yung-Hao Ching, Hou-Feng Li
{"title":"Hybrids of two destructive subterranean termites established in the field, revealing a potential for gene flow between species","authors":"Guan-Yu Chen, Shih-Ying Huang, Ming-Der Lin, Thomas Chouvenc, Yung-Hao Ching, Hou-Feng Li","doi":"10.1038/s41437-024-00679-0","DOIUrl":"10.1038/s41437-024-00679-0","url":null,"abstract":"Hybridization between invasive pest species may lead to significant genetic and economic impacts that require close monitoring. The two most invasive and destructive termite species worldwide, Coptotermes formosanus Shiraki and Coptotermes gestroi (Wasmann), have the potential for hybridization in the field. A three-year field survey conducted during the dispersal flight season of Coptotermes in Taiwan identified alates with atypical morphology, which were confirmed as hybrids of the two Coptotermes species using microsatellite and mitochondrial analyses. Out of 27,601 alates collected over three years, 4.4% were confirmed as hybrid alates, and some advanced hybrids (>F1 generations) were identified. The hybrid alates had a dispersal flight season that overlapped with the two parental species 13 out of 15 times. Most of the hybrid alates were females, implying that mating opportunities beyond F1 may primarily be possible through female hybrids. However, the incipient colony growth results from all potential mating combinations suggest that only backcross colonies with hybrid males could sometimes lead to brood development. The observed asymmetrical viability and fertility of hybrid alates may critically reduce the probability of advanced-hybrid colonies being established in the field.","PeriodicalId":12991,"journal":{"name":"Heredity","volume":"132 5","pages":"257-266"},"PeriodicalIF":3.8,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41437-024-00679-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140172230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HeredityPub Date : 2024-03-18DOI: 10.1038/s41437-024-00677-2
Luke Ambrose, Scott L. Allen, Charlie Iro’ofa, Charles Butafa, Nigel W. Beebe
{"title":"Genetic and geographic population structure in the malaria vector, Anopheles farauti, provides a candidate system for pioneering confinable gene-drive releases","authors":"Luke Ambrose, Scott L. Allen, Charlie Iro’ofa, Charles Butafa, Nigel W. Beebe","doi":"10.1038/s41437-024-00677-2","DOIUrl":"10.1038/s41437-024-00677-2","url":null,"abstract":"Indoor insecticide applications are the primary tool for reducing malaria transmission in the Solomon Archipelago, a region where Anopheles farauti is the only common malaria vector. Due to the evolution of behavioural resistance in some An. farauti populations, these applications have become less effective. New malaria control interventions are therefore needed in this region, and gene-drives provide a promising new technology. In considering developing a population-specific (local) gene-drive in An. farauti, we detail the species’ population genetic structure using microsatellites and whole mitogenomes, finding many spatially confined populations both within and between landmasses. This strong population structure suggests that An. farauti would be a useful system for developing a population-specific, confinable gene-drive for field release, where private alleles can be used as Cas9 targets. Previous work on Anopheles gambiae has used the Cardinal gene for the development of a global population replacement gene-drive. We therefore also analyse the Cardinal gene to assess whether it may be a suitable target to engineer a gene-drive for the modification of local An. farauti populations. Despite the extensive population structure observed in An. farauti for microsatellites, only one remote island population from Vanuatu contained fixed and private alleles at the Cardinal locus. Nonetheless, this study provides an initial framework for further population genomic investigations to discover high-frequency private allele targets in localized An. farauti populations. This would enable the development of gene-drive strains for modifying localised populations with minimal chance of escape and may provide a low-risk route to field trial evaluations.","PeriodicalId":12991,"journal":{"name":"Heredity","volume":"132 5","pages":"232-246"},"PeriodicalIF":3.8,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41437-024-00677-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140143319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HeredityPub Date : 2024-03-13DOI: 10.1038/s41437-024-00678-1
Laura Garaud, David Nusbaumer, Lucas Marques da Cunha, Christian de Guttry, Laurie Ançay, Audrey Atherton, Emilien Lasne, Claus Wedekind
{"title":"Parental kinship coefficient but not paternal coloration predicts early offspring growth in lake char","authors":"Laura Garaud, David Nusbaumer, Lucas Marques da Cunha, Christian de Guttry, Laurie Ançay, Audrey Atherton, Emilien Lasne, Claus Wedekind","doi":"10.1038/s41437-024-00678-1","DOIUrl":"10.1038/s41437-024-00678-1","url":null,"abstract":"The ‘good genes’ hypotheses of sexual selection predict that females prefer males with strong ornaments because they are in good health and vigor and can afford the costs of the ornaments. A key assumption of this concept is that male health and vigor are useful predictors of genetic quality and hence offspring performance. We tested this prediction in wild-caught lake char (Salvelinus umbla) whose breeding coloration is known to reveal aspects of male health. We first reanalyzed results from sperm competition trials in which embryos of known parenthood had been raised singly in either a stress- or non-stress environment. Paternal coloration did not correlate with any measures of offspring performance. However, offspring growth was reduced with higher kinship coefficients between the parents. To test the robustness of these first observations, we collected a new sample of wild males and females, used their gametes in a full-factorial in vitro breeding experiment, and singly raised about 3000 embryos in either a stress- or non-stress environment (stress induced by microbes). Again, paternal coloration did not predict offspring performance, while offspring growth was reduced with higher kinship between the parents. We conclude that, in lake char, the genetic benefits of mate choice would be strongest if females could recognize and avoid genetically related males, while male breeding colors may be more relevant in intra-sexual selection.","PeriodicalId":12991,"journal":{"name":"Heredity","volume":"132 5","pages":"247-256"},"PeriodicalIF":3.8,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41437-024-00678-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140119329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HeredityPub Date : 2024-03-12DOI: 10.1038/s41437-024-00676-3
Carolina Pacheco, Helena Rio-Maior, Mónia Nakamura, Francisco Álvares, Raquel Godinho
{"title":"Relatedness-based mate choice and female philopatry: inbreeding trends of wolf packs in a human-dominated landscape","authors":"Carolina Pacheco, Helena Rio-Maior, Mónia Nakamura, Francisco Álvares, Raquel Godinho","doi":"10.1038/s41437-024-00676-3","DOIUrl":"10.1038/s41437-024-00676-3","url":null,"abstract":"Inbreeding can reduce offspring fitness and has substantial implications for the genetic diversity and long-term viability of populations. In social cooperative canids, inbreeding is conditioned by the geographic proximity between opposite-sex kin outside natal groups and the presence of related individuals in neighbouring groups. Consequently, challenges in moving into other regions where the species is present can also affect inbreeding rates. These can be particularly problematic in areas of high human density, where movement can be restricted, even for highly vagile species. In this study, we investigate the socio-ecological dynamics of Iberian wolf packs in the human-dominated landscape of Alto Minho, in northwest Portugal, where wolves exhibit a high prevalence of short-distance dispersal and limited gene flow with neighbouring regions. We hypothesise that mating occurs regardless of relatedness, resulting in recurrent inbreeding due to high kin encounter rates. Using data from a 10-year non-invasive genetic monitoring programme and a combination of relatedness estimates and genealogical reconstructions, we describe genetic diversity, mate choice, and dispersal strategies among Alto Minho packs. In contrast with expectations, our findings reveal relatedness-based mate choice, low kin encounter rates, and a reduced number of inbreeding events. We observed a high prevalence of philopatry, particularly among female breeders, with the most common breeding strategy involving the pairing of a philopatric female with an unrelated immigrant male. Overall, wolves were not inbred, and temporal changes in genetic diversity were not significant. Our findings are discussed, considering the demographic trend of wolves in Alto Minho and its human-dominated landscape.","PeriodicalId":12991,"journal":{"name":"Heredity","volume":"132 4","pages":"211-220"},"PeriodicalIF":3.8,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41437-024-00676-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140109845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HeredityPub Date : 2024-02-29DOI: 10.1038/s41437-024-00675-4
Katherine L. Bell, Anna Noreuil, Erin K. Molloy, Megan L. Fritz
{"title":"Genetic and behavioral differences between above and below ground Culex pipiens bioforms","authors":"Katherine L. Bell, Anna Noreuil, Erin K. Molloy, Megan L. Fritz","doi":"10.1038/s41437-024-00675-4","DOIUrl":"10.1038/s41437-024-00675-4","url":null,"abstract":"Efficiency of mosquito-borne disease transmission is dependent upon both the preference and fidelity of mosquitoes as they seek the blood of vertebrate hosts. While mosquitoes select their blood hosts through multi-modal integration of sensory cues, host-seeking is primarily an odor-guided behavior. Differences in mosquito responses to hosts and their odors have been demonstrated to have a genetic component, but the underlying genomic architecture of these responses has yet to be fully resolved. Here, we provide the first characterization of the genomic architecture of host preference in the polymorphic mosquito species, Culex pipiens. The species exists as two morphologically identical bioforms, each with distinct avian and mammalian host preferences. Cx. pipiens females with empirically measured host responses were prepared into reduced representation DNA libraries and sequenced to identify genomic regions associated with host preference. Multiple genomic regions associated with host preference were identified on all 3 Culex chromosomes, and these genomic regions contained clusters of chemosensory genes, as expected based on work in Anopheles gambiae complex mosquitoes and in Aedes aegypti. One odorant receptor and one odorant binding protein gene showed one-to-one orthologous relationships to differentially expressed genes in A. gambiae complex members with divergent host preferences. Overall, our work identifies a distinct set of odorant receptors and odorant binding proteins that may enable Cx. pipiens females to distinguish between their vertebrate blood host species, and opens avenues for future functional studies that could measure the unique contributions of each gene to host preference phenotypes.","PeriodicalId":12991,"journal":{"name":"Heredity","volume":"132 5","pages":"221-231"},"PeriodicalIF":3.8,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139996119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HeredityPub Date : 2024-02-10DOI: 10.1038/s41437-024-00673-6
Caelinn James, Josephine M. Pemberton, Pau Navarro, Sara Knott
{"title":"Investigating pedigree- and SNP-associated components of heritability in a wild population of Soay sheep","authors":"Caelinn James, Josephine M. Pemberton, Pau Navarro, Sara Knott","doi":"10.1038/s41437-024-00673-6","DOIUrl":"10.1038/s41437-024-00673-6","url":null,"abstract":"Estimates of narrow sense heritability derived from genomic data that contain related individuals may be biased due to the within-family effects such as dominance, epistasis and common environmental factors. However, for many wild populations, removal of related individuals from the data would result in small sample sizes. In 2013, Zaitlen et al. proposed a method to estimate heritability in populations that include close relatives by simultaneously fitting an identity-by-state (IBS) genomic relatedness matrix (GRM) and an identity-by-descent (IBD) GRM. The IBD GRM is identical to the IBS GRM, except relatedness estimates below a specified threshold are set to 0. We applied this method to a sample of 8557 wild Soay sheep from St. Kilda, with genotypic information for 419,281 single nucleotide polymorphisms. We aimed to see how this method would partition heritability into population-level (IBS) and family-associated (IBD) variance for a range of genetic architectures, and so we focused on a mixture of polygenic and monogenic traits. We also implemented a variant of the model in which the IBD GRM was replaced by a GRM constructed from SNPs with low minor allele frequency to examine whether any additive genetic variance is captured by rare alleles. Whilst the inclusion of the IBD GRM did not significantly improve the fit of the model for the monogenic traits, it improved the fit for some of the polygenic traits, suggesting that dominance, epistasis and/or common environment not already captured by the non-genetic random effects fitted in our models may influence these traits.","PeriodicalId":12991,"journal":{"name":"Heredity","volume":"132 4","pages":"202-210"},"PeriodicalIF":3.8,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41437-024-00673-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139716041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HeredityPub Date : 2024-02-02DOI: 10.1038/s41437-024-00671-8
Carla Midori Iiyama, Joe Abdul Vilcherrez-Atoche, Maria Antonietta Germanà, Wagner Aparecido Vendrame, Jean Carlos Cardoso
{"title":"Breeding of ornamental orchids with focus on Phalaenopsis: current approaches, tools, and challenges for this century","authors":"Carla Midori Iiyama, Joe Abdul Vilcherrez-Atoche, Maria Antonietta Germanà, Wagner Aparecido Vendrame, Jean Carlos Cardoso","doi":"10.1038/s41437-024-00671-8","DOIUrl":"10.1038/s41437-024-00671-8","url":null,"abstract":"Ornamental orchid breeding programs have been conducted to develop commercially valuable cultivars with improved characteristics of commercial interest, such as size, flower color, pattern, shape, and resistance to pathogens. Conventional breeding, including sexual hybridization followed by selection of desirable characteristics in plants, has so far been the main method for ornamental breeding, but other techniques, including mutation induction by polyploidization and gamma irradiation, and biotechnological techniques, such as genetic transformation, have also been studied and used in ornamental breeding programs. Orchids are one of the most commercially important families in floriculture industry, having very particular reproductive biology characteristics and being a well-studied group of ornamentals in terms of genetic improvement. The present review focuses on the conventional and biotechnological techniques and approaches specially employed in breeding Phalaenopsis orchids, the genus with highest worldwide importance as an ornamental orchid, highlighting the main limitations and strengths of the approaches. Furthermore, new opportunities and future prospects for ornamental breeding in the CRISPR/Cas9 genome editing era are also discussed. We conclude that conventional hybridization remains the most used method to obtain new cultivars in orchids. However, the emergence of the first biotechnology-derived cultivars, as well as the new biotechnological tools available, such as CRISPR-Cas9, rekindled the full potential of biotechnology approaches and their importance for improve ornamental orchid breeding programs.","PeriodicalId":12991,"journal":{"name":"Heredity","volume":"132 4","pages":"163-178"},"PeriodicalIF":3.8,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139668568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}