{"title":"A study of the void surface healing mechanism in 316LN steel","authors":"Mingli Qin, Jiansheng Liu, Jing-dan Li, Xuezhong Zhang","doi":"10.1515/htmp-2022-0282","DOIUrl":"https://doi.org/10.1515/htmp-2022-0282","url":null,"abstract":"Abstract The behavior of void surface healing in 316LN steel samples undergoing thermal plasticity deformation was investigated using the Gleeble 1500 thermomechanical simulator. The characterization of the void surface after plastic deformation was analyzed under different deformation temperatures, deformation amounts, and holding time durations. The morphology evolution and microstructure of the void surface healing zone during thermal plasticity deformation and holding time duration stage were analyzed using electron back scatter diffraction imaging. The mechanism of void surface healing under thermal plasticity deformation was investigated. It was found that the degree of void surface healing increases with the degree of deformation and the duration of the holding time. Dynamic recrystallization occurred continuously at the void surface, resulting in a plethora of crystal defects and a substantial amount of energy. These conditions were conducive to atomic diffusion and migration, thereby promoting the healing process of the void surface. Maintaining high temperature after deformation can continue to provide energy for the diffusion and migration of atoms, promotes the growth of recrystallized grains, and gradually heals the void surface.","PeriodicalId":12966,"journal":{"name":"High Temperature Materials and Processes","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45525743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Limin Zhang, Liguang Zhu, Cai-Jun Zhang, Pengcheng Xiao, Xingjuan Wang
{"title":"Influence of submerged entry nozzle on funnel mold surface velocity","authors":"Limin Zhang, Liguang Zhu, Cai-Jun Zhang, Pengcheng Xiao, Xingjuan Wang","doi":"10.1515/htmp-2022-0247","DOIUrl":"https://doi.org/10.1515/htmp-2022-0247","url":null,"abstract":"Abstract In this article, physical and numerical simulation of the flow field in flexible thin slab caster funnel mold at high casting speed is carried out with a five-hole submerged entry nozzle (FHSEN), and characteristics of the flow field on funnel mold liquid level under different casting speeds (4, 5, and 6 m·min−1) and different submerged depths (130, 160, and 190 mm) are studied by comparing with the new submerged entry nozzle (NSEN) designed. Physical simulation is based on the funnel mold prototype. Numerical simulation is carried out based on FLUENT software, and industrial experiments of two kinds of submerged entry nozzle are also carried out. The results show that in the case of both physical and numerical simulation, the maximum surface velocity of the FHSEN funnel mold is 0.58 m·s−1, and the funnel mold liquid level is prone to slag entrapment. The NSEN funnel mold’ maximum surface velocity is 0.37 m·s−1. Compared with the FHSEN, the NSEN funnel mold’ maximum surface velocity decreases by 0.21 m·s−1, and funnel mold surface velocity decreases significantly. Finally, the accuracy of simulation results is verified by industrial tests, and it is also show that NSEN can greatly reduce funnel mold surface velocity and probability of slag entrapment.","PeriodicalId":12966,"journal":{"name":"High Temperature Materials and Processes","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44076552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mahadevan Govindasamy, Lloyd Jenner Mangalakaran Joseph Manuel, Senthilkumar Thamilkolunthu
{"title":"Influence of shielding gas on machining and wear aspects of AISI 310–AISI 2205 dissimilar stainless steel joints","authors":"Mahadevan Govindasamy, Lloyd Jenner Mangalakaran Joseph Manuel, Senthilkumar Thamilkolunthu","doi":"10.1515/htmp-2022-0262","DOIUrl":"https://doi.org/10.1515/htmp-2022-0262","url":null,"abstract":"Abstract In this article, the effect of shielding gas combinations on gas tungsten arc-welded dissimilar AISI 310 steel and AISI 2205 steel joints was investigated. Two gases such as nitrogen and carbon dioxide were substituted in argon shielding gas and its corresponding improvement in the mechanical, microstructural, machining, and wear aspects of the dissimilar AISI 310–AISI 2205 joints was studied. Weld bead studies, tensile, and weld region microhardness were conducted. X-ray diffraction studies revealed joint intermetallics, and microstructural evaluation was conducted. Machining studies were conducted using drilling experiments. Using local analysis and global analysis, the cutting force variations in the feed direction and cutting direction were studied. Wear tests revealed that the variations in traction force, specific wear rate, coefficient of friction and tribo wear mass loss were studied. A considerable improvement in wear characteristics of AISI 310–AISI 2205 joints was observed by substituting CO2 and N in shielding gas.","PeriodicalId":12966,"journal":{"name":"High Temperature Materials and Processes","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47184730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daisuke Akiyama, Tomoki Mishima, Y. Okamoto, A. Kirishima
{"title":"Dry synthesis of brannerite (UTi2O6) by mechanochemical treatment","authors":"Daisuke Akiyama, Tomoki Mishima, Y. Okamoto, A. Kirishima","doi":"10.1515/htmp-2022-0268","DOIUrl":"https://doi.org/10.1515/htmp-2022-0268","url":null,"abstract":"Abstract A powder mixture of UO2 and TiO2 was mechanochemically treated in a planetary ball mill under Ar atmosphere for 1 h using a tungsten carbide vial and balls as the milling medium. Such mechanochemical (MC) treatment reduced the crystallinity of UO2 and TiO2. The mechanochemically treated powder mixture was heated at 700–1,300°C for 6 h under Ar atmosphere and analyzed by X-ray diffraction analysis, scanning electron microscopy-energy-dispersive X-ray spectroscopy, and X-ray absorption fine structure analysis. For comparison, a UO2 and TiO2 mixture without MC treatment was heated and analyzed under the same conditions. UTi2O6 did not form below 1,100°C without MC treatment and only the starting materials were observed. At 1,200 and 1,300°C, a small amount of UTi2O6 and equal amounts of UTi2O6 and UO2 were formed, respectively. The mechanochemically treated sample produced nearly pure UTi2O6 containing small amounts of UO2 impurities when heated above 900°C for 6 h. UTi2O6 was highly crystalline and uniform regardless of the synthesis temperature. It is suggested that the crystallinity of UO2 and TiO2 was reduced and the formation of UTi2O6 was promoted by MC treatment.","PeriodicalId":12966,"journal":{"name":"High Temperature Materials and Processes","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44052214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of refining slag compositions on its melting property and desulphurization","authors":"Shisen Li, Lingzhong Kong, Zhaolong Xu","doi":"10.1515/htmp-2022-0293","DOIUrl":"https://doi.org/10.1515/htmp-2022-0293","url":null,"abstract":"Abstract To investigate the feasibility of the refining slag with low fluoride, some oxides such as Al 2 O 3 , SiO 2 , B 2 O 3 , and Li 2 O were used to replace CaF 2 in refining slag with the equivalent weight replacement method, and then the melting temperature and desulphurization capacity of slag were determined. The results show that the melting temperature of slag (CaF 2 < 4 mass% and Al 2 O 3 > 28 mass%) is less than 1,706 K, when CaF 2 is substituted by Al 2 O 3 . This slag is able to decrease [S] in steel to less than 0.0060 mass%. In the case of substitution of CaF 2 by SiO 2 , the melting temperature increases, while the desulphurization rate decreases. The fluxing action of B 2 O 3 is stronger than that of CaF 2 , and the melting temperature decreases to 1,561 K when CaF 2 is substituted by B 2 O 3 . Li 2 O can not only lower the melting temperature of slag but also improve the desulphurization rate.","PeriodicalId":12966,"journal":{"name":"High Temperature Materials and Processes","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135212520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Burdovitsin, K. Karpov, L. Ngon A. Kiki, E. Oks
{"title":"Aluminum oxide films fabricated by reactive electron-beam evaporation in the forevacuum pressure range","authors":"V. Burdovitsin, K. Karpov, L. Ngon A. Kiki, E. Oks","doi":"10.1615/hightempmatproc.2023048009","DOIUrl":"https://doi.org/10.1615/hightempmatproc.2023048009","url":null,"abstract":"","PeriodicalId":12966,"journal":{"name":"High Temperature Materials and Processes","volume":"20 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84192708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shishi Wei, Xuan Xiao, Kai Zhou, Jing Yao, Dezhi Chen
{"title":"First-principles investigation of phase stability and elastic properties of Laves phase TaCr2 by ruthenium alloying","authors":"Shishi Wei, Xuan Xiao, Kai Zhou, Jing Yao, Dezhi Chen","doi":"10.1515/htmp-2022-0255","DOIUrl":"https://doi.org/10.1515/htmp-2022-0255","url":null,"abstract":"Abstract Based on the first-principles method of density functional theory, the microscopic mechanism of the effect of addition of alloying element Ru content on the stability and elastic properties of Laves phase TaCr2 was investigated by parameters such as formation enthalpy, electronic structure, and elastic constants. The addition of Ru atoms tends to preferentially occupy the lattice sites of Cr. With the increase in the Ru content, the alloying ability of Ta8Cr16−n Ru n (n = 0–6) becomes progressively weaker, the stability gradually decreases, whereas the Poisson’s ratio grows. The bonding peak appears to drop and widen, weakening the bonding strength of Ta–Cr atoms, rendering the shear deformation to be performed easily, thereby improving toughness. When the Ru content rises to 20.83 at%, the bulk modulus, shear modulus, Young’s modulus, and Poisson’s ratio of the alloy attain the maximum value, the brittleness diminishes to the most extent, the resistance to elastic deformation is the strongest, as well at the optimum fracture toughness.","PeriodicalId":12966,"journal":{"name":"High Temperature Materials and Processes","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42991286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuang Cai, Liguang Wang, Yuzhu Zhang, Tao Li, Tie Tian, Tianji Liu
{"title":"Transfer and transformation mechanism of chromium in stainless steel slag in pedosphere","authors":"Shuang Cai, Liguang Wang, Yuzhu Zhang, Tao Li, Tie Tian, Tianji Liu","doi":"10.1515/htmp-2022-0252","DOIUrl":"https://doi.org/10.1515/htmp-2022-0252","url":null,"abstract":"Abstract The trivalent chromium (Cr) leached from stainless steel slag can be oxidized into hexavalent Cr with strong toxicity in the natural storage process, thus causing severe pollution to the surrounding soil, water, and atmosphere. Currently, the toxicity hazards caused by high Cr concentrations in plants, animals, and humans have attracted widespread attention from across the world. In this study, an overview is presented regarding the occurrence mode, leaching mechanism, and influencing factors for the presence of Cr in the soil of stainless steel slag under natural landfilling conditions. Meanwhile, a summary is made for the research progress in Cr absorption, transport, and accumulation in the soil–plant system. Besides, allowing for the toxicity and detrimental effect of Cr(vi) in the soil as well as the application of biological and chemical methods for the remediation of Cr(vi)-contaminated soil, a review is conducted on the approach to recycling Cr from stainless steel slag and the application of chemical remediation and biological methods to remedy Cr-containing soil. Finally, a discussion is conducted about the transfer and transformation behavior of Cr in soil–plant system, the practical application of soil remediation technology and the prospect of research in this field.","PeriodicalId":12966,"journal":{"name":"High Temperature Materials and Processes","volume":"42 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41320414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Technology and analysis of 08Cr9W3Co3VNbCuBN steel large diameter thick wall pipe welding process","authors":"Feng Wang, Fengshou Zhang, Jiang Ma, Xizhen Ma","doi":"10.1515/htmp-2022-0256","DOIUrl":"https://doi.org/10.1515/htmp-2022-0256","url":null,"abstract":"Abstract In this article, the welding technology of large diameter thick wall 08Cr9W3Co3VNbCuBN (G115) heat-resistant steel pipes for the main steam pipe of a 650°C ultra-supercritical power station boiler has been investigated, and the mechanical properties and microstructure of welded joints at different wall thickness positions have also been analyzed. The results show that the mechanical properties of narrow gap welded joint of 115 mm thick large diameter 08Cr9W3Co3VNbCuBN heat-resistant steel pipe obtained by Gas tungsten arc welding (GTAW) + shielded metal arc welding (SMAW) + automatic submerged arc welding (SAW) can meet the requirements of relevant standards after tempering at 780°C. The tensile failure of the welded joint occurs in the base metal zone far away from the weld, an obvious necking phenomenon appears at the fracture position, and the welded joint has good tensile properties. No δ ferrite phase was found in the weld and heat-affected zone (HAZ). The microstructures of each zone are tempered martensite.","PeriodicalId":12966,"journal":{"name":"High Temperature Materials and Processes","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49192410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparison of data-driven prediction methods for comprehensive coke ratio of blast furnace","authors":"Xiuyun Zhai, Mingtong Chen","doi":"10.1515/htmp-2022-0261","DOIUrl":"https://doi.org/10.1515/htmp-2022-0261","url":null,"abstract":"Abstract The emission of blast furnace (BF) exhaust gas has been criticized by society. It is momentous to quickly predict the comprehensive coke ratio (CCR) of BF, because CCR is one of the important indicators for evaluating gas emissions, energy consumption, and production stability, and also affects composite economic benefits. In this article, 13 data-driven prediction techniques, including six conventional and seven ensemble methods, are applied to predict CCR. The result of ten-fold cross-validation indicates that multiple linear regression (MLR) and support vector regression (SVR) based on radial basis function are superior to the other methods. The mean absolute error, the root mean square error, and the coefficient of determination (R 2) of the MLR model are 1.079 kg·t−1, 1.668, and 0.973, respectively. The three indicators of the SVR model are 1.158 kg·t−1, 1.878, and 0.975, respectively. Furthermore, AdaBoost based on linear regression has also strong prediction ability and generalization performance. The three methods have important significances both in theory and in practice for predicting CCR. Moreover, the models constructed here can provide valuable hints into realizing data-driven control of the BF process.","PeriodicalId":12966,"journal":{"name":"High Temperature Materials and Processes","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49447862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}