{"title":"Design and Testing of a Static Rig for Tesla Turbine Flow Visualization","authors":"M. Ferrando, M. Caminale, F. Reggio, P. Silvestri","doi":"10.1115/gt2021-59175","DOIUrl":"https://doi.org/10.1115/gt2021-59175","url":null,"abstract":"\u0000 The aim of this work is to describe the design and the use of an innovative test rig for investigating the expansion of subcooled fluids inside a converging nozzle and the evolution of two-phase flows in Tesla-type turbines. The flow exiting the nozzle enters tangentially into a thin flat circular chamber and it finally is discharged in the center through a duct perpendicular to it. The experimental test rig has two nozzles placed in diametric position. This peculiar shape reproduces the geometry of a single gap between two discs of a Tesla turbine, a machine that potentially could replace the throttling valve in chillers and heat pumps to increase their COP. The study of a simple and static geometry is necessary in order to calibrate the CFD modeling of the phase change in nozzle and rotor chamber. The rig was designed and assembled by TPG of the University of Genoa in the framework of the Pump-Heat H2020 project.\u0000 Here it is used subcooled water and, in order to fully characterize the expansion conditions, the rig has been equipped with pressure sensors at the nozzle inlet and at the rig outlet. A Coriolis mass flow meter and a temperature sensor were also placed at nozzle inlet. High-resolution cameras provided and managed by Ansaldo Energia were used to look at the position and shape of the front of the fluid phase change along and around the nozzle as a function of varying pressure and temperature conditions. The tests were performed in the 2.1–5.1barG pressure range and in the 132–155°C temperature range, feeding either one or both nozzles.\u0000 Future work involves the use of different nozzle profiles, such as a convergent/divergent in order to test both subsonic and supersonic flows, and experimental analysis of pressures in the rotor chamber, aimed to optimize the geometry of nozzles and Tesla turbines in two-phase applications.","PeriodicalId":129194,"journal":{"name":"Volume 6: Ceramics and Ceramic Composites; Coal, Biomass, Hydrogen, and Alternative Fuels; Microturbines, Turbochargers, and Small Turbomachines","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114747738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eva van Beurden, A. Pożarlik, B. Putra, G. Brem, Thijs Bouten, J.A.M. Withag, L. Axelsson
{"title":"Improved CFD Predictions of Pyrolysis Oil Combustion Using Advanced Spray Measurements and Numerical Models","authors":"Eva van Beurden, A. Pożarlik, B. Putra, G. Brem, Thijs Bouten, J.A.M. Withag, L. Axelsson","doi":"10.1115/gt2021-59206","DOIUrl":"https://doi.org/10.1115/gt2021-59206","url":null,"abstract":"\u0000 In search of an economical and environmentally friendly manner of power generation the industry is forced to find fuels which can replace conventional fossil fuels. During the last years this has led to significant developments in the production of alternative fuels, whereby these fuels became a more reliable and more efficient source of energy. Fast pyrolysis oil (FPO) is considered as a promising example of one of the alternative fuels.\u0000 This research focuses on the application of FPO in a gas turbine combustion chamber. For the OPRA OP16 gas turbine, a numerical approach using advanced CFD simulations has been applied to a real scale gas turbine combustor. The simulations are supported by full-scale combustor tests and atomizer spray experiments. Hereby it has been shown numerically and experimentally that the gas turbine combustion chamber can operate on FPO in the 30–100% load range.\u0000 The droplet Sauter Mean Diameter (SMD) has been investigated by means of a Particle Droplet Image Analysis to visualize the sprays in the near field of the atomizer. The effects of the spray pattern are of key importance to the flame structure in the gas turbine combustion chamber. Therefore the results from this dedicated test experiment have been used as input for dedicated CFD simulations.\u0000 A dedicated combustion model of fast pyrolysis oil has been developed for the OpenFOAM code, considering both the evaporation of the oil and the burnout of the char. In the simulations the gas turbine electrical load, the cone angle and the droplet SMD of the spray were varied. These simulations provide a detailed insight and description on the evaporation of the pyrolysis oil and the flame characteristics in the low calorific fuel combustor of OPRA’s OP16.","PeriodicalId":129194,"journal":{"name":"Volume 6: Ceramics and Ceramic Composites; Coal, Biomass, Hydrogen, and Alternative Fuels; Microturbines, Turbochargers, and Small Turbomachines","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133041315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Predicting EBC Temperature Limits for Industrial Gas Turbines","authors":"B. Pint, P. Stack, K. Kane","doi":"10.1115/gt2021-59408","DOIUrl":"https://doi.org/10.1115/gt2021-59408","url":null,"abstract":"\u0000 Higher turbine inlet temperatures may require the use of ceramic matrix composites (CMC) such as SiC/SIC, which require environmental barrier coatings (EBCs) to protect them against the detrimental effect of water vapor. The goal of this project is to determine the maximum bond coating temperature for EBCs for land-based turbines, where the minimum coating lifetime is 25,000 h. If the temperature exceeds the 1414°C melting point of the Si bond coating, then coatings without a bond coating also need to be evaluated. Thus, current Yb2Si2O7 EBCs with a Si bond coating and next-generation EBCs without a Si bond coating are being evaluated in laboratory testing using 1-h cycles in air+90%H2O. For this initial work, coatings were deposited on CVD SiC coupons. Reaction kinetics at 1250°, 1300° and 1350°C have been evaluated by measuring the thickness of the thermally grown silica scale after 100–500 h exposures. For comparison, scale growth rates for uncoated SiC and Si specimens in dry and wet environments were included as minimum and maximum values, respectively. Based on a critical scale thickness failure criteria, estimated maximum temperatures were calculated for both EBC systems using this initial data.","PeriodicalId":129194,"journal":{"name":"Volume 6: Ceramics and Ceramic Composites; Coal, Biomass, Hydrogen, and Alternative Fuels; Microturbines, Turbochargers, and Small Turbomachines","volume":"92 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134179918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tobias Dielenschneider, J. Ratz, Sebastian Leichtfuß, H. Schiffer, W. Eißler
{"title":"On the Challenge of Determining the Surge Limit of Turbocharger Compressors: Part 1 – Experimental and Numerical Analysis of the Operating Limits","authors":"Tobias Dielenschneider, J. Ratz, Sebastian Leichtfuß, H. Schiffer, W. Eißler","doi":"10.1115/gt2021-59439","DOIUrl":"https://doi.org/10.1115/gt2021-59439","url":null,"abstract":"\u0000 The surge limit of compressors is one key parameter in the design process of modern turbocharger compressors for automotive applications. Since the compressor is operated close to the surge limit, the determination of the surge limit is of high importance. Unfortunately, the determination of the surge limit with any numerical method with high accuracy is still an unsolved challenge. The numerical surge limit is often determined by the operating point with the minimum converged mass flow rate. But, as this investigation will clearly show, this cannot be used as a surge limit of the investigated compressor configuration. In this paper it will be shown that a more differentiated approach is required when it comes to operating limits. Especially, two different operating limits can be determined. A methodology for the determination of each limit will be presented. One is based on the system approach defined by Greitzer and the other one is based on the analysis of the low momentum fluid in the shroud region of the compressor wheel. Finally, experimental data will be used as benchmark data for both limits. The determination of the experimental surge limit is based on the analysis of transient experimental pressure signals. This is achieved through a fourier analysis of the unsteady compressor outlet pressure signal for transient surge runs.","PeriodicalId":129194,"journal":{"name":"Volume 6: Ceramics and Ceramic Composites; Coal, Biomass, Hydrogen, and Alternative Fuels; Microturbines, Turbochargers, and Small Turbomachines","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128952836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bipin Gupta, T. Yoshida, S. Ogawa, Yosuke Danmoto, T. Yoshimoto
{"title":"Improving Vibration Response of Radial Turbine in Variable Geometry Turbochargers With CFD Analysis","authors":"Bipin Gupta, T. Yoshida, S. Ogawa, Yosuke Danmoto, T. Yoshimoto","doi":"10.1115/gt2021-59139","DOIUrl":"https://doi.org/10.1115/gt2021-59139","url":null,"abstract":"\u0000 Recent advancements in internal combustion engine for efficient fuel combustion, such as application of miller cycle, where the closing of engine intake valve is purposely delayed to provide more cooling of air-fuel mixture during compression stroke for better engine efficiency, has led to a requirement for turbochargers to function at a wider operating range and higher compression ratio. One of the methods which have been largely accepted is the use of variable geometry turbochargers. As compared to diesel engine, operating conditions for gasoline engine require the turbine to operate at higher exhaust temperature, which increases the risk of damaging the rotor.\u0000 This paper discusses a detailed flow analysis of the effect of tip leakage and nozzle vane wake flow on surface pressure distribution of the turbine rotor, especially at the severe condition when vane trailing edge and rotor leading edge are in proximity. It was observed in steady and unsteady CFD simulations that the origination and propagation of tip leakage flow can be varied depending on the blade loading at the rotor leading edge, and the major interaction of nozzle wake can be switched from pressure surface to suction surface as rotor blade crossed a nozzle vane, which can drastically affect the alternating aerodynamic stresses. The sensitivity to this phenomenon has been evaluated by calculating the safety factor.\u0000 The authors modified the rotor design to weaken the effect of tip leakage flow in order to suppress variations in rotor surface pressure as it crosses the nozzle vane. It significantly reduced the alternating stress and increased the safety factor at vibration mode 2 from 0.3 to 9.3 and mode 3 from 0.6 to 3.2 respectively.","PeriodicalId":129194,"journal":{"name":"Volume 6: Ceramics and Ceramic Composites; Coal, Biomass, Hydrogen, and Alternative Fuels; Microturbines, Turbochargers, and Small Turbomachines","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126599632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Temperature-Dependent Fracture Mechanics-Informed Damage Model for Ceramic Matrix Composites","authors":"T. Skinner, A. Chattopadhyay","doi":"10.1115/gt2021-59789","DOIUrl":"https://doi.org/10.1115/gt2021-59789","url":null,"abstract":"\u0000 This work presents a temperature-dependent reformulation of a multiscale fracture mechanics-informed matrix damage model previously developed by the authors. In this paper, internal state variable theory, fracture mechanics, and temperature-dependent material properties and model parameters are implemented to account for length scale-specific ceramic matrix composite (CMC) brittle matrix damage initiation and propagation behavior for temperatures ranging from room temperature (RT) to 1200°C. A unified damage internal state variable (ISV) is introduced to capture effects of matrix porosity, which occurs as a result of material diffusion around grain boundaries, as well as matrix property degradation due to matrix crack initiation and propagation. The porosity contribution to the unified damage ISV is related to the volumetric strain, and matrix cracking effects are captured using fracture mechanics and crack growth kinetics. A combination of temperature-dependent material properties and damage model parameters are included in the model to simulate effects of temperature on the deformation and damage behavior of 2D woven C/SiC CMC material systems. Model calibration is performed using experimental data from literature for plain weave C/SiC CMC at RT, 700°C, and 1200°C to determine how damage model parameters change in this temperature range. The nonlinear, temperature-dependent predictive capabilities of the reformulated model are demonstrated for 1000°C using interpolation to obtain expected damage model parameters at this temperature and the predictions are in good agreement with experimental results at 1000°C.","PeriodicalId":129194,"journal":{"name":"Volume 6: Ceramics and Ceramic Composites; Coal, Biomass, Hydrogen, and Alternative Fuels; Microturbines, Turbochargers, and Small Turbomachines","volume":"57 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126526691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tim Wittmann, S. Lück, Tim Hertwig, C. Bode, J. Friedrichs
{"title":"The Influence of Condensation on the Performance Map of a Fuel Cell Turbocharger Turbine","authors":"Tim Wittmann, S. Lück, Tim Hertwig, C. Bode, J. Friedrichs","doi":"10.1115/gt2021-58472","DOIUrl":"https://doi.org/10.1115/gt2021-58472","url":null,"abstract":"\u0000 Exhaust gas of an automotive fuel cell is enriched with water vapour and has a pressure potential which can be utilized by a turbine. The gas expansion in the turbine leads to droplet nucleation and condensation. This results in a release of latent heat and a decrease of the gaseous mass flow which has a considerable influence on the turbine performance. This study aims to numerically investigate the influence of these phenomena on the performance map of the radial turbine of an automotive fuel cell turbocharger. For this purpose, the classical nucleation theory and Young’s droplet growth law are integrated into an Euler-Lagrange approach. The results show an almost linear relation between the pressure ratio and the condensation while the specific aerodynamics of an operating point has only a minor influence. At 80 % relative humidity of the inflow, the investigated turbine showed condensation above a total-to-static pressure ratio of 1.8. Condensation leads to thermal throttling of the turbine and to a temperature increase of the rotor outflow of up to 50 K. Increasing humidity of the inflow increases the power output, but condensation losses reduce the efficiency.","PeriodicalId":129194,"journal":{"name":"Volume 6: Ceramics and Ceramic Composites; Coal, Biomass, Hydrogen, and Alternative Fuels; Microturbines, Turbochargers, and Small Turbomachines","volume":"590 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131551935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Musacchio, A. Serra, Luca Cencioni, S. Colantoni, P. Bartocci, F. Fantozzi
{"title":"Decarbonizing Materials and Machining for the Gas Turbines Sector Through Life Cycle Assessment","authors":"A. Musacchio, A. Serra, Luca Cencioni, S. Colantoni, P. Bartocci, F. Fantozzi","doi":"10.1115/gt2021-59689","DOIUrl":"https://doi.org/10.1115/gt2021-59689","url":null,"abstract":"\u0000 Nowadays the Energy Industry and Industrial Power Plants are committed to support sustainable development balancing environmental, social and economic benefits. Turbomachinery products, in particular gas turbines design, have to overcome the barriers imposed by: performance, lifetime and costs requirements. A new approach based on Life Cycle Assessment (LCA) is needed to define the correlation between carbon footprint and costs for different materials, manufacturing processes and production regions. To develop a decision-making tool to design sustainable products in the gas turbine sector high quality data are needed to model what is the impact of: materials and operations. Manufacturing operations (like forging and casting) and machining operations (like drilling, milling, turning, together with coating operations) are taken into account in this study. These processes have been customized to model the processes of the real supply chains used in Baker Hughes to build up a database, which is more focused on gas turbines, respect to the ones which can be found in the commercial LCA databases.","PeriodicalId":129194,"journal":{"name":"Volume 6: Ceramics and Ceramic Composites; Coal, Biomass, Hydrogen, and Alternative Fuels; Microturbines, Turbochargers, and Small Turbomachines","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129617174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Iacopo Catalani, Andrea Agnolucci, F. Balduzzi, A. Bianchini, A. Arnone, G. Ferrara, G. Vichi, A. Bellissima, Ryota Minamino, G. Asai
{"title":"Aerodynamic Optimization of a Turbocharger Unit Based on the Overall Efficiency Enhancement of an Internal Combustion Engine for Stationary Power Production","authors":"Iacopo Catalani, Andrea Agnolucci, F. Balduzzi, A. Bianchini, A. Arnone, G. Ferrara, G. Vichi, A. Bellissima, Ryota Minamino, G. Asai","doi":"10.1115/gt2021-58843","DOIUrl":"https://doi.org/10.1115/gt2021-58843","url":null,"abstract":"\u0000 In case of stationary power production, the matching between the turbocharger and the engine can be optimized around a specific operating point, rather than throughout a wide range like in automotive applications. This, in turn, may enable a finer optimization of the aerodynamic efficiency in comparison to existing industrial standards.\u0000 The present study then reports a joint research activity aimed at defining an integrated approach to optimize the overall performance of an engine for stationary power production via a dedicated optimization of the turbocharger unit. In further detail, the aerodynamic optimization of the compressor, the turbine and the static parts is carried out by means of high-fidelity CFD simulations, while a 1D model of the powertrain is realized by means of the GT-Power software. An iterative procedure between the two simulation frameworks is established to account for the fluid dynamic connection between the engine and the turbocharger. Even though the selected case study was a “high quality” commercial product, the study shows how notable aerodynamic improvements can be achieved on turbocharger aerodynamics, thanks to the fact that the rangeability can be narrowed. Efficiency increases of 2.4% and of 3.4% have been reached for the compressor and the turbine, respectively. In the selected case study, this reflected into a moderate overall engine improvement (+0.5%), which however is not negligible in case of engine for stationary power production. Anyhow, the results suggest more promising prospects in case the methodology is applied since the early design of the engine.","PeriodicalId":129194,"journal":{"name":"Volume 6: Ceramics and Ceramic Composites; Coal, Biomass, Hydrogen, and Alternative Fuels; Microturbines, Turbochargers, and Small Turbomachines","volume":"136 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131566156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reduced-Order Modeling of Extreme Speed Turbochargers","authors":"D. Fellows, D. Bodony, R. Mcgowan","doi":"10.1115/gt2021-58759","DOIUrl":"https://doi.org/10.1115/gt2021-58759","url":null,"abstract":"\u0000 In order to improve their efficiency and performance, aircraft intermittent combustion engines often incorporate turbochargers that are adapted from ground-based applications. These turbochargers experience conditions outside of their design operating envelope and are found to experience high-cycle fatigue brought on by aerodynamically-induced blade resonances. The onset of fluid-structural interactions, such as flutter and forced response, in turbochargers at these conditions has not been extensively studied. A reduced-order model of the aeroelastic response of the turbine is developed using the Euler-Lagrange equation informed by numerical data from uncoupled computational fluid dynamic (CFD) and computational structural dynamic (CSD) calculations. The structural response of the reduced-order model is derived from a method of assumed modes approach. The unsteady fluid response is described by a modified version of piston theory as a first step towards including inhomogeneous aerodynamic forcing. Details of the reduced order model are given. The capability of the reduced-order model to predict the presence of flutter from a subset of the uncoupled numerical simulation data is discussed.","PeriodicalId":129194,"journal":{"name":"Volume 6: Ceramics and Ceramic Composites; Coal, Biomass, Hydrogen, and Alternative Fuels; Microturbines, Turbochargers, and Small Turbomachines","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131084727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}