利用先进的喷雾测量和数值模型改进了热解油燃烧的CFD预测

Eva van Beurden, A. Pożarlik, B. Putra, G. Brem, Thijs Bouten, J.A.M. Withag, L. Axelsson
{"title":"利用先进的喷雾测量和数值模型改进了热解油燃烧的CFD预测","authors":"Eva van Beurden, A. Pożarlik, B. Putra, G. Brem, Thijs Bouten, J.A.M. Withag, L. Axelsson","doi":"10.1115/gt2021-59206","DOIUrl":null,"url":null,"abstract":"\n In search of an economical and environmentally friendly manner of power generation the industry is forced to find fuels which can replace conventional fossil fuels. During the last years this has led to significant developments in the production of alternative fuels, whereby these fuels became a more reliable and more efficient source of energy. Fast pyrolysis oil (FPO) is considered as a promising example of one of the alternative fuels.\n This research focuses on the application of FPO in a gas turbine combustion chamber. For the OPRA OP16 gas turbine, a numerical approach using advanced CFD simulations has been applied to a real scale gas turbine combustor. The simulations are supported by full-scale combustor tests and atomizer spray experiments. Hereby it has been shown numerically and experimentally that the gas turbine combustion chamber can operate on FPO in the 30–100% load range.\n The droplet Sauter Mean Diameter (SMD) has been investigated by means of a Particle Droplet Image Analysis to visualize the sprays in the near field of the atomizer. The effects of the spray pattern are of key importance to the flame structure in the gas turbine combustion chamber. Therefore the results from this dedicated test experiment have been used as input for dedicated CFD simulations.\n A dedicated combustion model of fast pyrolysis oil has been developed for the OpenFOAM code, considering both the evaporation of the oil and the burnout of the char. In the simulations the gas turbine electrical load, the cone angle and the droplet SMD of the spray were varied. These simulations provide a detailed insight and description on the evaporation of the pyrolysis oil and the flame characteristics in the low calorific fuel combustor of OPRA’s OP16.","PeriodicalId":129194,"journal":{"name":"Volume 6: Ceramics and Ceramic Composites; Coal, Biomass, Hydrogen, and Alternative Fuels; Microturbines, Turbochargers, and Small Turbomachines","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved CFD Predictions of Pyrolysis Oil Combustion Using Advanced Spray Measurements and Numerical Models\",\"authors\":\"Eva van Beurden, A. Pożarlik, B. Putra, G. Brem, Thijs Bouten, J.A.M. Withag, L. Axelsson\",\"doi\":\"10.1115/gt2021-59206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In search of an economical and environmentally friendly manner of power generation the industry is forced to find fuels which can replace conventional fossil fuels. During the last years this has led to significant developments in the production of alternative fuels, whereby these fuels became a more reliable and more efficient source of energy. Fast pyrolysis oil (FPO) is considered as a promising example of one of the alternative fuels.\\n This research focuses on the application of FPO in a gas turbine combustion chamber. For the OPRA OP16 gas turbine, a numerical approach using advanced CFD simulations has been applied to a real scale gas turbine combustor. The simulations are supported by full-scale combustor tests and atomizer spray experiments. Hereby it has been shown numerically and experimentally that the gas turbine combustion chamber can operate on FPO in the 30–100% load range.\\n The droplet Sauter Mean Diameter (SMD) has been investigated by means of a Particle Droplet Image Analysis to visualize the sprays in the near field of the atomizer. The effects of the spray pattern are of key importance to the flame structure in the gas turbine combustion chamber. Therefore the results from this dedicated test experiment have been used as input for dedicated CFD simulations.\\n A dedicated combustion model of fast pyrolysis oil has been developed for the OpenFOAM code, considering both the evaporation of the oil and the burnout of the char. In the simulations the gas turbine electrical load, the cone angle and the droplet SMD of the spray were varied. These simulations provide a detailed insight and description on the evaporation of the pyrolysis oil and the flame characteristics in the low calorific fuel combustor of OPRA’s OP16.\",\"PeriodicalId\":129194,\"journal\":{\"name\":\"Volume 6: Ceramics and Ceramic Composites; Coal, Biomass, Hydrogen, and Alternative Fuels; Microturbines, Turbochargers, and Small Turbomachines\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 6: Ceramics and Ceramic Composites; Coal, Biomass, Hydrogen, and Alternative Fuels; Microturbines, Turbochargers, and Small Turbomachines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/gt2021-59206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6: Ceramics and Ceramic Composites; Coal, Biomass, Hydrogen, and Alternative Fuels; Microturbines, Turbochargers, and Small Turbomachines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2021-59206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了寻找一种既经济又环保的发电方式,该行业被迫寻找可以取代传统化石燃料的燃料。在过去几年中,这导致了替代燃料生产方面的重大发展,从而这些燃料成为更可靠和更有效的能源来源。快速热解油(FPO)被认为是一种很有前途的替代燃料。本文主要研究了FPO在燃气轮机燃烧室中的应用。针对OPRA OP16燃气轮机,将先进的CFD数值模拟方法应用于实际规模的燃气轮机燃烧室。仿真结果得到了全尺寸燃烧室试验和雾化器喷雾试验的支持。由此,通过数值和实验证明,燃气轮机燃烧室在30 ~ 100%负荷范围内可以在FPO上运行。采用粒子液滴图像分析方法,对雾化器近场内的喷雾进行了研究。喷淋模式对燃气轮机燃烧室火焰结构的影响至关重要。因此,该专用测试实验的结果已被用作专用CFD模拟的输入。在OpenFOAM规范中建立了一个专门的快速热解油燃烧模型,同时考虑了油的蒸发和焦炭的燃尽。在模拟中,燃气轮机的电负荷、喷嘴的锥角和液滴的SMD都发生了变化。这些模拟结果为OPRA的OP16低热量燃料燃烧器中热解油的蒸发和火焰特性提供了详细的了解和描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved CFD Predictions of Pyrolysis Oil Combustion Using Advanced Spray Measurements and Numerical Models
In search of an economical and environmentally friendly manner of power generation the industry is forced to find fuels which can replace conventional fossil fuels. During the last years this has led to significant developments in the production of alternative fuels, whereby these fuels became a more reliable and more efficient source of energy. Fast pyrolysis oil (FPO) is considered as a promising example of one of the alternative fuels. This research focuses on the application of FPO in a gas turbine combustion chamber. For the OPRA OP16 gas turbine, a numerical approach using advanced CFD simulations has been applied to a real scale gas turbine combustor. The simulations are supported by full-scale combustor tests and atomizer spray experiments. Hereby it has been shown numerically and experimentally that the gas turbine combustion chamber can operate on FPO in the 30–100% load range. The droplet Sauter Mean Diameter (SMD) has been investigated by means of a Particle Droplet Image Analysis to visualize the sprays in the near field of the atomizer. The effects of the spray pattern are of key importance to the flame structure in the gas turbine combustion chamber. Therefore the results from this dedicated test experiment have been used as input for dedicated CFD simulations. A dedicated combustion model of fast pyrolysis oil has been developed for the OpenFOAM code, considering both the evaporation of the oil and the burnout of the char. In the simulations the gas turbine electrical load, the cone angle and the droplet SMD of the spray were varied. These simulations provide a detailed insight and description on the evaporation of the pyrolysis oil and the flame characteristics in the low calorific fuel combustor of OPRA’s OP16.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信