Farhad Hamidzadeh, Mir Saman Pishvaee, Naeme Zarrinpoor
{"title":"A novel two-stage network data envelopment analysis model for kidney allocation problem under medical and logistical uncertainty: a real case study.","authors":"Farhad Hamidzadeh, Mir Saman Pishvaee, Naeme Zarrinpoor","doi":"10.1007/s10729-024-09683-6","DOIUrl":"10.1007/s10729-024-09683-6","url":null,"abstract":"<p><p>Organ transplantation is one of the most complicated and challenging treatments in healthcare systems. Despite the significant medical advancements, many patients die while waiting for organ transplants because of the noticeable differences between organ supply and demand. In the organ transplantation supply chain, organ allocation is the most significant decision during the organ transplantation procedure, and kidney is the most widely transplanted organ. This research presents a novel method for assessing the efficiency and ranking of qualified organ-patient pairs as decision-making units (DMUs) for kidney allocation problem in the existence of COVID-19 pandemic and uncertain medical and logistical data. To achieve this goal, two-stage network data envelopment analysis (DEA) and credibility-based chance constraint programming (CCP) are utilized to develop a novel two-stage fuzzy network data envelopment analysis (TSFNDEA) method. The main benefits of the developed method can be summarized as follows: considering internal structures in kidney allocation system, investigating both medical and logistical aspects of the problem, the capability of expanding to other network structures, and unique efficiency decomposition under uncertainty. Moreover, in order to evaluate the validity and applicability of the proposed approach, a validation algorithm utilizing a real case study and different confidence levels is used. Finally, the numerical results indicate that the developed approach outperforms the existing kidney allocation system.</p>","PeriodicalId":12903,"journal":{"name":"Health Care Management Science","volume":" ","pages":"555-579"},"PeriodicalIF":2.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142345536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A reinforcement learning approach for the online dynamic home health care scheduling problem.","authors":"Quy Ta-Dinh, Tu-San Pham, Minh Hoàng Hà, Louis-Martin Rousseau","doi":"10.1007/s10729-024-09692-5","DOIUrl":"10.1007/s10729-024-09692-5","url":null,"abstract":"<p><p>Over recent years, home health care has gained significant attention as an efficient solution to the increasing demand for healthcare services. Home health care scheduling is a challenging problem involving multiple complicated assignments and routing decisions subject to various constraints. The problem becomes even more challenging when considered on a rolling horizon with stochastic patient requests. This paper discusses the Online Dynamic Home Health Care Scheduling Problem (ODHHCSP), in which a home health care agency has to decide whether to accept or reject a patient request and determine the visit schedule and routes in case of acceptance. The objective of the problem is to maximize the number of patients served, given the limited resources. When the agency receives a patient's request, a decision must be made on the spot, which poses many challenges, such as stochastic future requests or a limited time budget for decision-making. In this paper, we model the problem as a Markov decision process and propose a reinforcement learning (RL) approach. The experimental results show that the proposed approach outperforms other algorithms in the literature in terms of solution quality. In addition, a constant runtime of less than 0.001 seconds for each decision makes the approach especially suitable for an online setting like our problem.</p>","PeriodicalId":12903,"journal":{"name":"Health Care Management Science","volume":" ","pages":"650-664"},"PeriodicalIF":2.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142635976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guilherme Mendes Vara, Marta Castilho Gomes, Diogo Cunha Ferreira
{"title":"Assessing the performance of Portuguese public hospitals before and during COVID-19 outbreak, with optimistic and pessimistic benchmarking approaches.","authors":"Guilherme Mendes Vara, Marta Castilho Gomes, Diogo Cunha Ferreira","doi":"10.1007/s10729-024-09693-4","DOIUrl":"https://doi.org/10.1007/s10729-024-09693-4","url":null,"abstract":"<p><p>The COVID-19 pandemic had a profound impact on the tertiary sector, particularly in healthcare, which faced unprecedented demand despite the existence of limited resources, such as hospital beds, staffing resources, and funding. The magnitude and global scale of this crisis provide a compelling incentive to thoroughly analyse its effects. This study aims to identify best practices within the Portuguese national healthcare service, with the goal of improving preparedness for future crises and informing policy decisions. Using a Benefit-of-the-Doubt (BoD) approach, this research constructs composite indicators to assess the pandemic's impact on the Portuguese public hospitals. The study analyzes monthly data from 2017 to May 2022, highlighting critical trends and performance fluctuations during this period. The findings reveal that each COVID-19 wave led to a decline in hospital performance, with the first wave being the most severe due to a lack of preparedness. Furthermore, the pandemic worsened the disparities among examined hospitals. Pre-pandemic top performers in each group improved their performance and were more consistently recognized as benchmarks, with their average benchmark frequency increasing from 66.5% to 83.5%. These top entities demonstrated greater resilience and adaptability, further distancing themselves from underperforming hospitals, which saw declines in both performance scores and benchmark frequency, widening the performance gap. The superior performance of top entities can be attributed to pre-existing strategic tools and contextual factors that enabled them to withstand the pandemic's challenges more effectively. HIGHLIGHTS: • The pandemic aggravated the differences between the hospitals examined. • The top-performing entities further distanced themselves from the remaining entities after the pandemic • Entities considered benchmarks before the pandemic remained the same, and became even more consistent during the pandemic. • The top-performing entities achieved higher scores than their pre-pandemic performance levels. • Benchmarking models for composite indicators with diverse decision-making preferences, and treatment of imperfect knowledge of data.</p>","PeriodicalId":12903,"journal":{"name":"Health Care Management Science","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142739415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Leveraging the potential of the German operating room benchmarking initiative for planning: A ready-to-use surgical process data set.","authors":"Grigory Korzhenevich, Anne Zander","doi":"10.1007/s10729-024-09672-9","DOIUrl":"10.1007/s10729-024-09672-9","url":null,"abstract":"<p><p>We present a freely available data set of surgical case mixes and surgery process duration distributions based on processed data from the German Operating Room Benchmarking initiative. This initiative collects surgical process data from over 320 German, Austrian, and Swiss hospitals. The data exhibits high levels of quantity, quality, standardization, and multi-dimensionality, making it especially valuable for operating room planning in Operations Research. We consider detailed steps of the perioperative process and group the data with respect to the hospital's level of care, the surgery specialty, and the type of surgery patient. We compare case mixes for different subgroups and conclude that they differ significantly, demonstrating that it is necessary to test operating room planning methods in different settings, e.g., using data sets like ours. Further, we discuss limitations and future research directions. Finally, we encourage the extension and foundation of new operating room benchmarking initiatives and their usage for operating room planning.</p>","PeriodicalId":12903,"journal":{"name":"Health Care Management Science","volume":" ","pages":"328-351"},"PeriodicalIF":2.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461674/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140848511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dissatisfaction-considered waiting time prediction for outpatients with interpretable machine learning.","authors":"Jongkyung Shin, Donggi Augustine Lee, Juram Kim, Chiehyeon Lim, Byung-Kwan Choi","doi":"10.1007/s10729-024-09676-5","DOIUrl":"10.1007/s10729-024-09676-5","url":null,"abstract":"<p><p>Long waiting time in outpatient departments is a crucial factor in patient dissatisfaction. We aim to analytically interpret the waiting times predicted by machine learning models and provide patients with an explanation of the expected waiting time. Here, underestimating waiting times can cause patient dissatisfaction, so preventing this in predictive models is necessary. To address this issue, we propose a framework considering dissatisfaction for estimating the waiting time in an outpatient department. In our framework, we leverage asymmetric loss functions to ensure robustness against underestimation. We also propose a dissatisfaction-aware asymmetric error score (DAES) to determine an appropriate model by considering the trade-off between underestimation and accuracy. Finally, Shapley additive explanation (SHAP) is applied to interpret the relationship trained by the model, enabling decision makers to use this information for improving outpatient service operations. We apply our framework in the endocrinology metabolism department and neurosurgery department in one of the largest hospitals in South Korea. The use of asymmetric functions prevents underestimation in the model, and with the proposed DAES, we can strike a balance in selecting the best model. By using SHAP, we can analytically interpret the waiting time in outpatient service (e.g., the length of the queue affects the waiting time the most) and provide explanations about the expected waiting time to patients. The proposed framework aids in improving operations, considering practical application in hospitals for real-time patient notification and minimizing patient dissatisfaction. Given the significance of managing hospital operations from the perspective of patients, this work is expected to contribute to operations improvement in health service practices.</p>","PeriodicalId":12903,"journal":{"name":"Health Care Management Science","volume":" ","pages":"370-390"},"PeriodicalIF":2.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461612/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141186080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chou-Chun Wu, Yiwen Cao, Sze-Chuan Suen, Eugene Lin
{"title":"Examining chronic kidney disease screening frequency among diabetics: a POMDP approach.","authors":"Chou-Chun Wu, Yiwen Cao, Sze-Chuan Suen, Eugene Lin","doi":"10.1007/s10729-024-09677-4","DOIUrl":"10.1007/s10729-024-09677-4","url":null,"abstract":"<p><p>Forty percent of diabetics will develop chronic kidney disease (CKD) in their lifetimes. However, as many as 50% of these CKD cases may go undiagnosed. We developed screening recommendations stratified by age and previous test history for individuals with diagnosed diabetes and unknown proteinuria status by race and gender groups. To do this, we used a Partially Observed Markov Decision Process (POMDP) to identify whether a patient should be screened at every three-month interval from ages 30-85. Model inputs were drawn from nationally-representative datasets, the medical literature, and a microsimulation that integrates this information into group-specific disease progression rates. We implement the POMDP solution policy in the microsimulation to understand how this policy may impact health outcomes and generate an easily-implementable, non-belief-based approximate policy for easier clinical interpretability. We found that the status quo policy, which is to screen annually for all ages and races, is suboptimal for maximizing expected discounted future net monetary benefits (NMB). The POMDP policy suggests more frequent screening after age 40 in all race and gender groups, with screenings 2-4 times a year for ages 61-70. Black individuals are recommended for screening more frequently than their White counterparts. This policy would increase NMB from the status quo policy between $1,000 to $8,000 per diabetic patient at a willingness-to-pay of $150,000 per quality-adjusted life year (QALY).</p>","PeriodicalId":12903,"journal":{"name":"Health Care Management Science","volume":" ","pages":"391-414"},"PeriodicalIF":2.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461555/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141246850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A novel approach to forecast surgery durations using machine learning techniques.","authors":"Marco Caserta, Antonio García Romero","doi":"10.1007/s10729-024-09681-8","DOIUrl":"10.1007/s10729-024-09681-8","url":null,"abstract":"<p><p>This study presents a methodology for predicting the duration of surgical procedures using Machine Learning (ML). The methodology incorporates a new set of predictors emphasizing the significance of surgical team dynamics and composition, including experience, familiarity, social behavior, and gender diversity. By applying ML techniques to a comprehensive dataset of over 77,000 surgeries, we achieved a 24% improvement in the mean absolute error (MAE) over a model that mimics the current approach of the decision maker. Our results also underscore the critical role of surgeon experience and team composition dynamics in enhancing prediction accuracy. These advancements can lead to more efficient operational planning and resource allocation in hospitals, potentially reducing downtime in operating rooms and improving healthcare delivery.</p>","PeriodicalId":12903,"journal":{"name":"Health Care Management Science","volume":" ","pages":"313-327"},"PeriodicalIF":2.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141563248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Health care management science - best paper of 2023.","authors":"Greg Zaric","doi":"10.1007/s10729-024-09689-0","DOIUrl":"10.1007/s10729-024-09689-0","url":null,"abstract":"","PeriodicalId":12903,"journal":{"name":"Health Care Management Science","volume":" ","pages":"483"},"PeriodicalIF":2.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142361448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancing affordability and profit in a non-cooperative, coordinated, hypothetical pediatric vaccine market via sequential optimization.","authors":"Bruno Alves-Maciel, Ruben A Proano","doi":"10.1007/s10729-024-09680-9","DOIUrl":"10.1007/s10729-024-09680-9","url":null,"abstract":"<p><p>This study considers a hypothetical global pediatric vaccine market where multiple coordinating entities make optimal procurement decisions on behalf of countries with different purchasing power. Each entity aims to improve affordability for its countries while maintaining a profitable market for vaccine producers. This study analyzes the effect of several factors on affordability and profitability, including the number of non-cooperative coordinating entities making procuring decisions, the number of market segments in which countries are grouped for tiered pricing purposes, how producers recover fixed production costs, and the procuring order of the coordinating entities. The study relies on a framework where entities negotiate sequentially with vaccine producers using a three-stage optimization process that solves a MIP and two LP problems to determine the optimal procurement plans and prices per dose that maximize savings for the entities' countries and profit for the vaccine producers. The study's results challenge current vaccine market dynamics and contribute novel alternative strategies to orchestrate the interaction of buyers, producers, and coordinating entities for enhancing affordability in a non-cooperative market. Key results show that the order in which the coordinating entities negotiate with vaccine producers and how the latter recuperate their fixed cost investments can significantly affect profitability and affordability. Furthermore, low-income countries can meet their demands more affordably by procuring vaccines through tiered pricing via entities coordinating many market segments. In contrast, upper-middle and high-income countries increase their affordability by procuring through entities with fewer and more extensive market segments. A procurement order that prioritizes entities based on the descending income level of their countries offers higher opportunities to increase affordability and profit when producers offer volume discounts.</p>","PeriodicalId":12903,"journal":{"name":"Health Care Management Science","volume":" ","pages":"436-457"},"PeriodicalIF":2.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141476508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}