初级卫生服务中数据包络分析的可视化。

IF 2.3 3区 医学 Q2 HEALTH POLICY & SERVICES
Health Care Management Science Pub Date : 2025-06-01 Epub Date: 2025-05-02 DOI:10.1007/s10729-025-09702-0
Ane Elixabete Ripoll-Zarraga, José Luis Franco Miguel, Carmen Fullana Belda
{"title":"初级卫生服务中数据包络分析的可视化。","authors":"Ane Elixabete Ripoll-Zarraga, José Luis Franco Miguel, Carmen Fullana Belda","doi":"10.1007/s10729-025-09702-0","DOIUrl":null,"url":null,"abstract":"<p><p>Benchmark efficiency analysis in public health typically focuses on hospitals rather than primary care providers. Data Envelopment Analysis (DEA) is widely used to assess resource efficiency among decision-making units (DMUs). However, traditional DEA struggles to differentiate between efficient units and is sensitive to the selection of inputs and outputs. Methods like super-efficiency and cross-efficiency address some of these limitations but often exclude outliers and may overlook efficiency related to specialisation. DEA Visualisation integrates DEA with multivariate statistical methods allowing for the identification of inefficiency sources and specialisation patterns without losing discriminatory power or removing extreme cases from the sample. This study analyses 82 public primary health centres in Madrid serving senior citizens in 2018. The findings reveal inefficiencies such as a preference for prescribing specific rather than generic drugs, increasing public health costs. Additionally, two extreme cases (outliers or mavericks) were identified as having high infrastructure costs and disproportionate staffing. Redistributing patients from overcrowded centres could enhance efficiency, while centres focused on preventive care showed greater cost-effectiveness, particularly in reducing prescription costs.</p>","PeriodicalId":12903,"journal":{"name":"Health Care Management Science","volume":" ","pages":"207-233"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12137389/pdf/","citationCount":"0","resultStr":"{\"title\":\"Visualisation of Data Envelopment Analysis in primary health services.\",\"authors\":\"Ane Elixabete Ripoll-Zarraga, José Luis Franco Miguel, Carmen Fullana Belda\",\"doi\":\"10.1007/s10729-025-09702-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Benchmark efficiency analysis in public health typically focuses on hospitals rather than primary care providers. Data Envelopment Analysis (DEA) is widely used to assess resource efficiency among decision-making units (DMUs). However, traditional DEA struggles to differentiate between efficient units and is sensitive to the selection of inputs and outputs. Methods like super-efficiency and cross-efficiency address some of these limitations but often exclude outliers and may overlook efficiency related to specialisation. DEA Visualisation integrates DEA with multivariate statistical methods allowing for the identification of inefficiency sources and specialisation patterns without losing discriminatory power or removing extreme cases from the sample. This study analyses 82 public primary health centres in Madrid serving senior citizens in 2018. The findings reveal inefficiencies such as a preference for prescribing specific rather than generic drugs, increasing public health costs. Additionally, two extreme cases (outliers or mavericks) were identified as having high infrastructure costs and disproportionate staffing. Redistributing patients from overcrowded centres could enhance efficiency, while centres focused on preventive care showed greater cost-effectiveness, particularly in reducing prescription costs.</p>\",\"PeriodicalId\":12903,\"journal\":{\"name\":\"Health Care Management Science\",\"volume\":\" \",\"pages\":\"207-233\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12137389/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health Care Management Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10729-025-09702-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH POLICY & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Care Management Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10729-025-09702-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"HEALTH POLICY & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

公共卫生的基准效率分析通常侧重于医院而不是初级保健提供者。数据包络分析(DEA)被广泛用于评估决策单元之间的资源效率。然而,传统的DEA难以区分有效单位,并且对投入和产出的选择很敏感。像超效率和交叉效率这样的方法解决了这些限制,但往往排除了异常值,并且可能忽略了与专业化相关的效率。DEA可视化将DEA与多元统计方法相结合,允许识别效率低下的来源和专业化模式,而不会失去歧视性权力或从样本中删除极端案例。这项研究分析了马德里2018年为老年人服务的82个公共初级卫生中心。研究结果揭示了效率低下的问题,比如更喜欢开专门药而不是仿制药,从而增加了公共卫生成本。此外,两个极端情况(异常值或特立独行)被确定为具有高基础设施成本和不成比例的人员配置。从拥挤的中心重新分配病人可以提高效率,而侧重于预防保健的中心则显示出更大的成本效益,特别是在降低处方费用方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visualisation of Data Envelopment Analysis in primary health services.

Benchmark efficiency analysis in public health typically focuses on hospitals rather than primary care providers. Data Envelopment Analysis (DEA) is widely used to assess resource efficiency among decision-making units (DMUs). However, traditional DEA struggles to differentiate between efficient units and is sensitive to the selection of inputs and outputs. Methods like super-efficiency and cross-efficiency address some of these limitations but often exclude outliers and may overlook efficiency related to specialisation. DEA Visualisation integrates DEA with multivariate statistical methods allowing for the identification of inefficiency sources and specialisation patterns without losing discriminatory power or removing extreme cases from the sample. This study analyses 82 public primary health centres in Madrid serving senior citizens in 2018. The findings reveal inefficiencies such as a preference for prescribing specific rather than generic drugs, increasing public health costs. Additionally, two extreme cases (outliers or mavericks) were identified as having high infrastructure costs and disproportionate staffing. Redistributing patients from overcrowded centres could enhance efficiency, while centres focused on preventive care showed greater cost-effectiveness, particularly in reducing prescription costs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Health Care Management Science
Health Care Management Science HEALTH POLICY & SERVICES-
CiteScore
7.20
自引率
5.60%
发文量
40
期刊介绍: Health Care Management Science publishes papers dealing with health care delivery, health care management, and health care policy. Papers should have a decision focus and make use of quantitative methods including management science, operations research, analytics, machine learning, and other emerging areas. Articles must clearly articulate the relevance and the realized or potential impact of the work. Applied research will be considered and is of particular interest if there is evidence that it was implemented or informed a decision-making process. Papers describing routine applications of known methods are discouraged. Authors are encouraged to disclose all data and analyses thereof, and to provide computational code when appropriate. Editorial statements for the individual departments are provided below. Health Care Analytics Departmental Editors: Margrét Bjarnadóttir, University of Maryland Nan Kong, Purdue University With the explosion in computing power and available data, we have seen fast changes in the analytics applied in the healthcare space. The Health Care Analytics department welcomes papers applying a broad range of analytical approaches, including those rooted in machine learning, survival analysis, and complex event analysis, that allow healthcare professionals to find opportunities for improvement in health system management, patient engagement, spending, and diagnosis. We especially encourage papers that combine predictive and prescriptive analytics to improve decision making and health care outcomes. The contribution of papers can be across multiple dimensions including new methodology, novel modeling techniques and health care through real-world cohort studies. Papers that are methodologically focused need in addition to show practical relevance. Similarly papers that are application focused should clearly demonstrate improvements over the status quo and available approaches by applying rigorous analytics. Health Care Operations Management Departmental Editors: Nilay Tanik Argon, University of North Carolina at Chapel Hill Bob Batt, University of Wisconsin The department invites high-quality papers on the design, control, and analysis of operations at healthcare systems. We seek papers on classical operations management issues (such as scheduling, routing, queuing, transportation, patient flow, and quality) as well as non-traditional problems driven by everchanging healthcare practice. Empirical, experimental, and analytical (model based) methodologies are all welcome. Papers may draw theory from across disciplines, and should provide insight into improving operations from the perspective of patients, service providers, organizations (municipal/government/industry), and/or society. Health Care Management Science Practice Departmental Editor: Vikram Tiwari, Vanderbilt University Medical Center The department seeks research from academicians and practitioners that highlights Management Science based solutions directly relevant to the practice of healthcare. Relevance is judged by the impact on practice, as well as the degree to which researchers engaged with practitioners in understanding the problem context and in developing the solution. Validity, that is, the extent to which the results presented do or would apply in practice is a key evaluation criterion. In addition to meeting the journal’s standards of originality and substantial contribution to knowledge creation, research that can be replicated in other organizations is encouraged. Papers describing unsuccessful applied research projects may be considered if there are generalizable learning points addressing why the project was unsuccessful. Health Care Productivity Analysis Departmental Editor: Jonas Schreyögg, University of Hamburg The department invites papers with rigorous methods and significant impact for policy and practice. Papers typically apply theory and techniques to measuring productivity in health care organizations and systems. The journal welcomes state-of-the-art parametric as well as non-parametric techniques such as data envelopment analysis, stochastic frontier analysis or partial frontier analysis. The contribution of papers can be manifold including new methodology, novel combination of existing methods or application of existing methods to new contexts. Empirical papers should produce results generalizable beyond a selected set of health care organizations. All papers should include a section on implications for management or policy to enhance productivity. Public Health Policy and Medical Decision Making Departmental Editors: Ebru Bish, University of Alabama Julie L. Higle, University of Southern California The department invites high quality papers that use data-driven methods to address important problems that arise in public health policy and medical decision-making domains. We welcome submissions that develop and apply mathematical and computational models in support of data-driven and model-based analyses for these problems. The Public Health Policy and Medical Decision-Making Department is particularly interested in papers that: Study high-impact problems involving health policy, treatment planning and design, and clinical applications; Develop original data-driven models, including those that integrate disease modeling with screening and/or treatment guidelines; Use model-based analyses as decision making-tools to identify optimal solutions, insights, recommendations. Articles must clearly articulate the relevance of the work to decision and/or policy makers and the potential impact on patients and/or society. Papers will include articulated contributions within the methodological domain, which may include modeling, analytical, or computational methodologies. Emerging Topics Departmental Editor: Alec Morton, University of Strathclyde Emerging Topics will handle papers which use innovative quantitative methods to shed light on frontier issues in healthcare management and policy. Such papers may deal with analytic challenges arising from novel health technologies or new organizational forms. Papers falling under this department may also deal with the analysis of new forms of data which are increasingly captured as health systems become more and more digitized.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信