Geologica Belgica最新文献

筛选
英文 中文
Spirifer disjunctus (Sowerby, J. de C. in Sedgwick & Murchison, 1840) and S. verneuili Murchison, 1840 (Brachiopoda, Spiriferida): 175 years of confusion Spirifer disjunctus (Sowerby, J. de C. in Sedgwick & Murchison, 1840)和S. verneuili Murchison, 1840(腕足目,Spiriferida): 175年的困惑
IF 1.8 4区 地球科学
Geologica Belgica Pub Date : 2017-12-20 DOI: 10.20341/gb.2017.010
P. Sartenaer
{"title":"Spirifer disjunctus (Sowerby, J. de C. in Sedgwick & Murchison, 1840) and S. verneuili Murchison, 1840 (Brachiopoda, Spiriferida): 175 years of confusion","authors":"P. Sartenaer","doi":"10.20341/gb.2017.010","DOIUrl":"https://doi.org/10.20341/gb.2017.010","url":null,"abstract":"Spirifer disjunctus (Sowerby, J. de C. in Sedgwick & Murchison, 1840) et S. verneuili Murchison, 1840 (Brachiopoda, Spiriferida): 175 annees de confusion. ‘Spirifera disjuncta’ Sowerby, J. de C. in Sedgwick & Murchison, 1840 et ‘Spirifer Verneuili’ Murchison, 1840 ont ete declares synonymes en 1840. ‘Spirifera disjuncta’ est base sur une serie type comprenant les moules de trois specimens du Devonien superieur d’Angleterre : un specimen provient du Strunien de Barnstaple dans le nord du Devon, les deux autres du Famennien superieur de Petherwin dans le nord des Cornouailles. La serie type de ‘Spirifer Verneuili’ comprend trois specimens du Frasnien du Boulonnais en France. Des lectotypes sont designes dans ce travail. La synonymie acceptee des deux especes prevaut encore a l’heure actuelle; elle est consideree injustifiee.","PeriodicalId":12812,"journal":{"name":"Geologica Belgica","volume":"10 1","pages":"181-188"},"PeriodicalIF":1.8,"publicationDate":"2017-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77971208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Revising the Gent Formation : a new lithostratigraphy for Quaternary wind-dominated sand deposits in Belgium 修正根特组:比利时第四纪风控砂岩沉积新的岩石地层学
IF 1.8 4区 地球科学
Geologica Belgica Pub Date : 2017-06-17 DOI: 10.20341/GB.2017.006
K. Beerten, Vanessa M. A. Heyvaert, D. Vandenberghe, J. V. Nieuland, F. Bogemans
{"title":"Revising the Gent Formation : a new lithostratigraphy for Quaternary wind-dominated sand deposits in Belgium","authors":"K. Beerten, Vanessa M. A. Heyvaert, D. Vandenberghe, J. V. Nieuland, F. Bogemans","doi":"10.20341/GB.2017.006","DOIUrl":"https://doi.org/10.20341/GB.2017.006","url":null,"abstract":"1. IntroductionThe Gent Formation was introduced by Paepe & Vanhoorne (1976) to include “all coversands deposited during the Weichselian”. Gullentops et al. (2001) extended the chronostratigraphical position of the Gent Formation to all sandy aeolian coversand deposits dating from the Middle and Late Pleistocene (Tables 1 & 2) and subdivided the formation in three members: the Dilsen Member (pre-Weichselian), the Sint-Lenaarts Member and the Wildert Member (both Weichselian). The Dilsen Member was initially introduced by Paulissen (1973) to include the coversand deposits in which an interglacial (Eemian) soil had developed. The Sint-Lenaarts Member was originally defined by De Ploey (1961) as reworked aeolian sand, with silt and peat layers, occurring underneath the Wildert Member. The latter included all coversand deposits that covered the pre-existing landscape as a blanket. In the scheme proposed by Gullentops et al. (2001), aeolian sands that constitute a dune landform where grouped into the Hechtel Formation. This formation included Late Glacial dune sands covering the Usselo Soil (Gullentops, 1957), as well as drift sands originating from aeolian reworking of older dune sands and Podzols during the Holocene (grouped in the Kalmthout Member; De Ploey, 1961). Table 1. Quaternary lithostratigraphy of marine, fluvial and aeolian deposits of Belgium, as defined in Gullentops et al. (2001).Table 2. Correlation between the latest version of the Dutch lithostratigraphy (TNO, 20","PeriodicalId":12812,"journal":{"name":"Geologica Belgica","volume":"73 1","pages":"95-102"},"PeriodicalIF":1.8,"publicationDate":"2017-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82172893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Osteology and relationships of Luxembourgichthys (“Pholidophorus”) friedeni gen. nov. (Teleostei, “Pholidophoriformes”) from the Lower Jurassic of Belgium and the Grand Duchy of Luxembourg 比利时和卢森堡大公国下侏罗统的Luxembourgichthys(“Pholidophorus”)friedeni gen. 11 . (Teleostei,“pholidophorformes”)的骨学和关系
IF 1.8 4区 地球科学
Geologica Belgica Pub Date : 2017-03-31 DOI: 10.20341/GB.2017.003
L. Taverne, É. Steurbaut
{"title":"Osteology and relationships of Luxembourgichthys (“Pholidophorus”) friedeni gen. nov. (Teleostei, “Pholidophoriformes”) from the Lower Jurassic of Belgium and the Grand Duchy of Luxembourg","authors":"L. Taverne, É. Steurbaut","doi":"10.20341/GB.2017.003","DOIUrl":"https://doi.org/10.20341/GB.2017.003","url":null,"abstract":"1. IntroductionThe lower Toarcian strata of southeast Belgium and the Grand Duchy of Luxembourg, known as the Grandcourt Marls or the Grandcourt Formation, yield a rich and diverse ichthyofauna, comprising the saurichthyid Acidorhynchus Stensio, 1925, the amiiform Caturus Agassiz, 1834, the semionotid Lepidotes Agassiz, 1832, the dapediids Dapedium Leach, 1822 and Tetragonolepis Bronn, 1830, the pachycormids Sauropsis Agassiz, 1832, Pachycormus Agassiz, 1833, Saurostomus Agassiz, 1833, Euthynotus Wagner 1860 and Haasichthys Delsate, 1999, the pholidophorid Pholidophorus Agassiz, 1832 (represented by two species) and the primitive cycloid teleost Leptolepis Agassiz, 1832 (Delsate, 1999a, b).Delsate (1999c) described the new species Pholidophorus friedeni on the basis of specimens found in different Toarcian localities of the Grand Duchy of Luxembourg. He stated that this taxon was also recorded in Germany and attributed this new species to the genus Pholidophorus, although without giving any reason for his choice. Moreover, he expressed some doubts about this generic attribution. Fragmentary samples of the same species, collected in the lower Toarcian strata of Athus (southeast Belgium), are housed in the collection of the Royal Belgian Institute of Natural Sciences (Brussels), but were not studied until now. The aim of this paper is to study the osteology of “Pholidophorus” friedeni in a more detailed way than had been previously done, to discuss its generic attribution and t","PeriodicalId":12812,"journal":{"name":"Geologica Belgica","volume":"274 1","pages":"53-67"},"PeriodicalIF":1.8,"publicationDate":"2017-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75093293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Halloysite occurrence at the karstified contact of Oligocene sands and Cretaceous calcarenites in Hinnisdael quarries, Vechmaal (NE of Belgium) 比利时Vechmaal Hinnisdael采石场渐新世砂岩与白垩系钙砾岩岩溶接触处高岭土赋存
IF 1.8 4区 地球科学
Geologica Belgica Pub Date : 2017-01-01 DOI: 10.20341/gb.2017.002
R. Adriaens, B. Ronchi, G. Mertens, Sofie Hollanders, J. Elsen, M. Dusar, N. Vandenberghe
{"title":"Halloysite occurrence at the karstified contact of Oligocene sands and Cretaceous calcarenites in Hinnisdael quarries, Vechmaal (NE of Belgium)","authors":"R. Adriaens, B. Ronchi, G. Mertens, Sofie Hollanders, J. Elsen, M. Dusar, N. Vandenberghe","doi":"10.20341/gb.2017.002","DOIUrl":"https://doi.org/10.20341/gb.2017.002","url":null,"abstract":"1. Introduction Halloysite is a dioctahedral 1:1 clay mineral of the kaolinite group frequently discussed in literature because of its potential for nanotechnological applications (Keeling, 2015; Yuan et al., 2015; Yuan et al., 2016). Its geological occurrence has been primarily linked to soil and weathering environments, by the weathering and alteration of volcanic rocks (Vaughan et al., 2002; Velde & Meunier, 2008), the alteration of clay minerals like montmorillonite or biotite (Hill, 2000; Papoulis et al., 2009) or weathering of feldspars (Sheets & Tettenhorst, 1997; Adamo et al., 2001). Halloysite is also a common mineral constituent in karst and paleokarst environments as a result of acid weathering (Polyak & Guven, 2000; Joussein et al., 2005). In Belgium, halloysite was reported in over 30 localities, almost all with a very similar geological setting, i.e. karstified carbonate substrates filled up by Cenozoic sand deposits (Buurman & Van der Plas, 1968; Dupuis & Ertus, 1995; Goemaere & Hanson, 1997; Nicaise, 1998; Kloprogge & Frost, 1999; De Putter et al. 2002; Bruyere, 2004). A similar geological setting is found inside the underground quarries of Hinnisdael, locally known as “mergelgrotten” (“marl caves”), located in Vechmaal, Limburg province, Belgium (Fig. 1). In two of the Hinnisdael underground quarries, dolines filled with marine sand were intersected and an irregular white clay layer occurs at the contact between the karstified top of the Cretaceous calcareni","PeriodicalId":12812,"journal":{"name":"Geologica Belgica","volume":"29 1","pages":"43-52"},"PeriodicalIF":1.8,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76465258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Platinum group element mineralization at Musongati (Burundi): concentration and Pd-Rh distribution in pentlandite 布隆迪Musongati铂族元素成矿:镍长岩中铂族元素的浓度和Pd-Rh分布
IF 1.8 4区 地球科学
Geologica Belgica Pub Date : 2017-01-01 DOI: 10.20341/GB.2016.018
Bram Paredis, P. Muchez, S. Dewaele
{"title":"Platinum group element mineralization at Musongati (Burundi): concentration and Pd-Rh distribution in pentlandite","authors":"Bram Paredis, P. Muchez, S. Dewaele","doi":"10.20341/GB.2016.018","DOIUrl":"https://doi.org/10.20341/GB.2016.018","url":null,"abstract":"1. Introduction The platinum group elements (PGE: Ru, Rh, Pd, Os, Ir & Pt) are considered as critical metals (European Commission, 2014) and are highly valued for their high-tech applications. They are being recycled and intensely mined, but still deficits are experienced and expected in the coming years (European Commission, 2014). Since the large PGE deposits, such as the Bushveld Complex in South Africa and the Noril’sk-Talnakh deposits in Russia, will become depleted with time, new deposits need to be explored for their PGE potential, to sustain future demand. The mafic-ultramafic intrusions in Burundi, which are part of the Kabanga-Musongati alignment, are such potential deposits. They intruded the Mesoproterozoic rocks of the Karagwe-Ankole belt around 1375 Ma and form a SW-NE alignment of nine intrusions in Burundi, with further continuation towards Tanzania (Fig. 1; Fernandez-Alonso et al., 2012). Several drilling campaigns have been executed between 1970 and 1990 to explore the nickel and PGE potential of these intrusions (PNUD-UNDP, 1977; Exploration und Bergbau Gmbh, 1985;Deblond, 1994; Deblond & Tack, 1999). Although some limited data on the concentration of PGE in the boreholes of these campaigns is available (e.g. Klerkx, 1975, 1976), not much is known about the PGE distribution. In addition, the petrogenesis of the intrusions needs further elaboration, expanding on the work of e.g. Bandyayera (1997) and Duchesne et al. (2004). Figure 1. (A) Regional geology o","PeriodicalId":12812,"journal":{"name":"Geologica Belgica","volume":"20 1","pages":"15-32"},"PeriodicalIF":1.8,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88044292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Givetian rugose corals from the Zemmour in Mauritania 毛里塔尼亚泽穆尔的吉田红珊瑚
IF 1.8 4区 地球科学
Geologica Belgica Pub Date : 2017-01-01 DOI: 10.20341/GB.2017.009
M. Coen-Aubert
{"title":"Givetian rugose corals from the Zemmour in Mauritania","authors":"M. Coen-Aubert","doi":"10.20341/GB.2017.009","DOIUrl":"https://doi.org/10.20341/GB.2017.009","url":null,"abstract":"1. Introduction The Givetian of the Zemmour is well exposed to the north of Bir Moghreim (formerly Fort Trinquet), in the northern part of Mauritania (Fig. 1). It was investigated in great detail, from a lithologic and biostratigraphic point of view, by Sougy (1964) who gathered among others a large collection of rugose corals in the early Sixties. Part of these specimens was sent to Professor Marius Lecompte of the Catholic University of Louvain in Belgium and is now stored in the Collection of Palaeontology of the Institut royal des Sciences naturelles de Belgique at Brussels. Three Givetian species of massive rugose corals have been identified in the Zemmour by Coen-Aubert (2013); these are Phillipsastrea torreana (Milne-Edwards & Haime, 1851), P. kergarvanensis Coen-Aubert & Plusquellec, 2007 and P. sobolewi (Rozkowska, 1956). Besides two massive colonies belonging to Argutastrea Crickmay, 1960 and Iowaphyllum Stumm, 1949, a diverse fauna of mostly solitary rugose corals is described in this paper. Unfortunately, the Givetian of the Zemmour is not dated or subdivided with much precision as there are nearly no recent studies on other groups of fossils and as there are no block samples available for the extraction of microfossils such as conodonts. Figure 1. General setting in Northwestern Africa. 2. Geological setting and material The Givetian of the Zemmour has been summarized with some detail by Coen-Aubert (2013), on the basis of the three main sections investigated by","PeriodicalId":12812,"journal":{"name":"Geologica Belgica","volume":"6 1","pages":"161-180"},"PeriodicalIF":1.8,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80086994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Facies and micromorphology of the Neoproterozoic Upper Diamictite Formation in the Democratic Republic of Congo: New evidence of sediment gravity flow 刚果民主共和国新元古代上二晶岩组的相与微形态:沉积物重力流的新证据
IF 1.8 4区 地球科学
Geologica Belgica Pub Date : 2017-01-01 DOI: 10.20341/GB.2017.004
F. Delpomdor, L. Tack, A. Préat
{"title":"Facies and micromorphology of the Neoproterozoic Upper Diamictite Formation in the Democratic Republic of Congo: New evidence of sediment gravity flow","authors":"F. Delpomdor, L. Tack, A. Préat","doi":"10.20341/GB.2017.004","DOIUrl":"https://doi.org/10.20341/GB.2017.004","url":null,"abstract":"1. IntroductionSince over a decade, numerous studies have postulated that extremely low global temperatures (-50 °C) existed during successive separate glaciations in the Cryogenian period (770–580 Ma). This would explain not only the presence of ice at sea level near the equator, but also an icy cover on all oceans (Snowball Earth Hypothesis; Kirschvink, 1992; Hoffman et al., 1998; Hoffman & Schrag, 2002). The original suggestion of a “global” glaciation in the Neoproterozoic by Harland (1964) was partly based on paleomagnetic data (Harland & Bidgood, 1959) pointing to low paleolatitudes for these glacial deposits. The latter, widely distributed on all continents, are sharply overlain by a cap carbonate unit, interpreted as the result of a sudden switch back to a greenhouse climate related to the increase of atmospheric carbon dioxide due to volcanic degassing (Hoffman & Schrag, 2002). Despite the absence of many typical “glacial” features (e.g., faceted and striated clasts, dropstones, etc.), most Neoproterozoic diamictites were considered as glacial or periglacial deposits. However, not all reported Neoproterozoic diamictites were interpreted in this way, but also as the result ofsyntectonic sedimentgravityflows (Eyles & Januszczak, 2004, 2007) associated with widespread rifting of the Rodinia Supercontinent.In this paper, we present a new macro- and microscale structural analysis of the Upper Diamictite Formation (UDF) in the West Congo Supergroup (WCS) of the Democratic","PeriodicalId":12812,"journal":{"name":"Geologica Belgica","volume":"80 1","pages":"69-79"},"PeriodicalIF":1.8,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73672676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Tectonic and climatic signals in the Oligocene sediments of the Southern North-Sea Basin (Ernest Van den Broeck medallist lecture 2016) 北海盆地南部渐新世沉积物中的构造和气候信号(Ernest Van den Broeck 2016年获奖讲座)
IF 1.8 4区 地球科学
Geologica Belgica Pub Date : 2017-01-01 DOI: 10.20341/gb.2017.007
N. Vandenberghe
{"title":"Tectonic and climatic signals in the Oligocene sediments of the Southern North-Sea Basin (Ernest Van den Broeck medallist lecture 2016)","authors":"N. Vandenberghe","doi":"10.20341/gb.2017.007","DOIUrl":"https://doi.org/10.20341/gb.2017.007","url":null,"abstract":"The Oligocene sediments formed between the Pyrenean and Savian tectonic pulses. The earliest Oligocene was characterized by a widespread shallow water transgression. Global cooling coincided with the subsequent retreat of the sea which is also the time of the Grande Coupure faunal turnover. Renewed stepwise transgression resulted in the deposition of the Boom Clay during the Rupelian. High-frequency cyclic changes in water depth of the Boom Clay are driven by waxing and waning of ice masses while lower-frequency cycles can be tectonic signals. By the end of the Rupelian, differential vertical tectonics resulted in considerable erosion west of the Campine subsidence area and in shallower water depth in the eastern part of the southern coastal area. Subsidence of the Lower-Rhine graben resumed at the start of the Chattian. The sea could only briefly transgress over the area outside the graben but in the graben thick Chattian sediments are preserved. Outside the graben, erosion continued to dominate during the Chattian and the Aquitanian. This long period above sea level is due to a combination of the Savian tectonic uplift pulse and a global low sea level.","PeriodicalId":12812,"journal":{"name":"Geologica Belgica","volume":"25 1","pages":"105-123"},"PeriodicalIF":1.8,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81923608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Update of the Devonian lithostratigraphic subdivision in the subsurface of the Campine Basin (northern Belgium) 比利时北部坎平盆地泥盆系地下岩石地层细分研究进展
IF 1.8 4区 地球科学
Geologica Belgica Pub Date : 2017-01-01 DOI: 10.20341/gb.2016.017
D. Lagrou, M. Coen-Aubert
{"title":"Update of the Devonian lithostratigraphic subdivision in the subsurface of the Campine Basin (northern Belgium)","authors":"D. Lagrou, M. Coen-Aubert","doi":"10.20341/gb.2016.017","DOIUrl":"https://doi.org/10.20341/gb.2016.017","url":null,"abstract":"1. IntroductionDuring the systematic lithostratigraphic description of the Palaeozoic deposits from the subsurface of the Campine Basin in northern Belgium (Lagrou, 2012), it appeared that certain stratigraphic intervals in deep boreholes, already identified and investigated as separated units by different authors (Langenaeker, 2000; Laenen, 2003), were not yet formally named. As one of the goals of the detailed stratigraphic study of Lagrou (2012) was to put all data in the Flemish web-based ‘Databank Ondergrond Vlaanderen’ (DOV), codes for the different lithostratigraphic units were needed. To be in accordance with DOV as well as with the Belgian official stratigraphy, the newly proposed lithostratigraphic units were submitted to the Belgian National Commission on Stratigraphy.This was the case for the Devonian Booischot Formation which is defined at the base of the Booischot borehole, above the Caledonian basement of the Brabant Massif. The Booischot borehole (Fig. 1A) has been drilled in 1963 for the Geological Survey of Belgium where the collection of cores is still stored and easily available. More generally, we present in this paper a complete stratigraphic overview of the Devonian from the Campine Basin, which has also been intersected by the Heibaart borehole (Fig. 1A). The study of the Heibaart borehole is mainly based on the unpublished report of Cornet (1976) illustrated by two photographic volumes of discontinuous cores with comments, which are stored in the Arch","PeriodicalId":12812,"journal":{"name":"Geologica Belgica","volume":"4 1","pages":"1-13"},"PeriodicalIF":1.8,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82447814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
The lithostratigraphy of the lower Devonian formations of the Eisleck region (northern Luxembourg). Comparison with their Belgian lateral equivalents esisleck地区(卢森堡北部)下泥盆世地层的岩石地层学。与他们的比利时横向等效比较
IF 1.8 4区 地球科学
Geologica Belgica Pub Date : 2017-01-01 DOI: 10.20341/gb.2017.001
L. Dejonghe, R. Colbach, E. Goemaere
{"title":"The lithostratigraphy of the lower Devonian formations of the Eisleck region (northern Luxembourg). Comparison with their Belgian lateral equivalents","authors":"L. Dejonghe, R. Colbach, E. Goemaere","doi":"10.20341/gb.2017.001","DOIUrl":"https://doi.org/10.20341/gb.2017.001","url":null,"abstract":"1. IntroductionThe Grand-Duchy of Luxembourg is divided into two main geographical regions, the Eisleck (Oesling in German) to the north (32% of the area) and the Guttland to the south (68% of the area). They correspond to two main geological provinces of the country (Fig. 1).Figure 1. Location map of the studied area.In the Eisleck region, lithostratigraphic units are of lower Devonian (Pragian and Emsian) age; they were folded during the Variscan orogeny) and belong to the SE part of the Ardenne Anticlinorium. From NNW to SSE, the main tectonic structures are: the Houffalize Synclinorium, the Bastogne-Stubach (Stupbach) Anticlinorium, the Neufchâteau-Wiltz-Eifel Synclinorium and the Givonne Anticlinorium. In detail, these large scale structures are complicated by numerous secondary synclines and anticlines.In the Guttland region, lithostratigraphic units belong to the Mesozoic era (Triassic and Jurassic); they are relatively flat-lying and form the northeastern tip of the Paris Basin, the so-called “Gulf of Trier-Luxembourg”.The oldest contribution to geology of the Eisleck region dates back to 1828 and is due to Steininger. The works of Wies (1867) and Wies & Siegen (1877) do not provide a lot of substantial additional information, except on the mineral wealth contained in the grounds of the Eisleck region. The first important contribution concerning the geological subdivisions of the Eisleck region is due to Gosselet (1885). Up to recently, the Luxembourg Devonian stratig","PeriodicalId":12812,"journal":{"name":"Geologica Belgica","volume":"34 1","pages":"33-42"},"PeriodicalIF":1.8,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79447447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信