Frontiers in Plant Science最新文献

筛选
英文 中文
Solanum pimpinellifolium exhibits complex genetic resistance to Pseudomonas syringae pv. tomato. Solanum pimpinellifolium 对 Pseudomonas syringae pv. tomato 表现出复杂的遗传抗性。
IF 4.1 2区 生物学
Frontiers in Plant Science Pub Date : 2024-10-23 eCollection Date: 2024-01-01 DOI: 10.3389/fpls.2024.1416078
Jana A Hassan, Nathan Diplock, Ilea J Chau-Ly, Jamie Calma, Elizabeth Boville, Steven Yee, Taylor M Harris, Jennifer D Lewis
{"title":"<i>Solanum pimpinellifolium</i> exhibits complex genetic resistance to <i>Pseudomonas syringae</i> pv. <i>tomato</i>.","authors":"Jana A Hassan, Nathan Diplock, Ilea J Chau-Ly, Jamie Calma, Elizabeth Boville, Steven Yee, Taylor M Harris, Jennifer D Lewis","doi":"10.3389/fpls.2024.1416078","DOIUrl":"10.3389/fpls.2024.1416078","url":null,"abstract":"<p><p><i>Pseudomonas syringae pv. tomato</i> (<i>Pst</i>) is the causal agent of bacterial speck disease in tomatoes. The <i>Pto/Prf</i> gene cluster from <i>Solanum pimpinellifolium</i> was introgressed into several modern tomato cultivars and provided protection against <i>Pst</i> race 0 strains for many decades. However, virulent <i>Pst</i> race 1 strains that evade <i>Pto</i>-mediated immunity now predominate in tomato-growing regions worldwide. Here we report the identification of resistance to a <i>Pst</i> race 1 strain (<i>Pst</i>19) in the wild tomato accession <i>S. pimpinellifolium</i> LA1589 (hereafter LA1589), using our rapid high-throughput seedling screen. LA1589 supports less bacterial growth than cultivars, and does not exhibit a hypersensitive response to <i>Pst</i>19. We tested an existing set of 87 Inbred Backcross Lines (IBLs) derived from a cross between susceptible <i>Solanum lycopersicum</i> E-6203 and <i>Solanum pimpinellifolium</i> LA1589 for resistance to <i>Pst</i>19. Using single-marker analysis, we identified three genomic regions associated with resistance. Bacterial growth assays on IBLs confirmed that these regions contribute to resistance <i>in planta</i>. We also mapped candidate genes associated with resistance in a cross between the <i>Solanum lycopersicum</i> var. <i>lycopersicum</i> cultivar Heinz BG-1706 and <i>S. pimpinellifolium</i> LA1589. By comparing candidates from the two mapping approaches, we were able to identify 3 QTL and 5 candidate genes in LA1589 for a role in resistance to <i>Pst</i>19. This work will assist in molecular marker-assisted breeding to protect tomato from bacterial speck disease.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537850/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142590505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CLE peptide signaling in plant-microbe interactions. 植物与微生物相互作用中的 CLE 肽信号传递。
IF 4.1 2区 生物学
Frontiers in Plant Science Pub Date : 2024-10-23 eCollection Date: 2024-01-01 DOI: 10.3389/fpls.2024.1481650
Satoru Nakagami, Taiki Kajiwara, Kenichi Tsuda, Shinichiro Sawa
{"title":"CLE peptide signaling in plant-microbe interactions.","authors":"Satoru Nakagami, Taiki Kajiwara, Kenichi Tsuda, Shinichiro Sawa","doi":"10.3389/fpls.2024.1481650","DOIUrl":"10.3389/fpls.2024.1481650","url":null,"abstract":"<p><p>Cell-cell communication is essential for both unicellular and multicellular organisms. Secreted peptides that act as diffusive ligands are utilized by eukaryotic organisms to transduce information between cells to coordinate developmental and physiological processes. In plants, The <i>CLAVATA3/EMBRYO SURROUNDING REGION-RELATED</i> (<i>CLE</i>) genes encode a family of secreted small peptides which play pivotal roles in stem cell homeostasis in various types of meristems. Accumulated evidence has revealed that CLE peptides mediate trans-kingdom interactions between plants and microbes, including pathogens and symbionts. This review highlights the emerging roles of CLE peptide signaling in plant-microbe interactions, focusing on their involvement in nodulation, immunity, and symbiosis with arbuscular mycorrhizal fungi. Understanding these interactions provides insights into the sophisticated regulatory networks to balance plant growth and defense, enhancing our knowledge of plant biology and potential agricultural applications.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538016/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142590507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing multi-environment trials in the Southern US Rice belt via smart-climate-soil prediction-based models and economic importance. 通过基于智能气候-土壤预测的模型和经济重要性,优化美国南部水稻带的多环境试验。
IF 4.1 2区 生物学
Frontiers in Plant Science Pub Date : 2024-10-23 eCollection Date: 2024-01-01 DOI: 10.3389/fpls.2024.1458701
Melina Prado, Adam Famoso, Kurt Guidry, Roberto Fritsche-Neto
{"title":"Optimizing multi-environment trials in the Southern US Rice belt via smart-climate-soil prediction-based models and economic importance.","authors":"Melina Prado, Adam Famoso, Kurt Guidry, Roberto Fritsche-Neto","doi":"10.3389/fpls.2024.1458701","DOIUrl":"10.3389/fpls.2024.1458701","url":null,"abstract":"<p><p>Rice breeding programs globally have worked to release increasingly productive and climate-smart cultivars, but the genetic gains have been limited for some reasons. One is the capacity for field phenotyping, which presents elevated costs and an unclear approach to defining the number and allocation of multi-environmental trials (MET). To address this challenge, we used soil information and ten years of historical weather data from the USA rice belt, which was translated into rice response based on the rice cardinal temperatures and crop stages. Next, we eliminated those highly correlated Environmental Covariates (ECs) (>0.95) and applied a supervised algorithm for feature selection using two years of data (2021-22) and 25 genotypes evaluated for grain yield in 18 representative locations in the Southern USA. To test the trials' optimization, we performed the joint analysis using prediction-based models in four different scenarios: i) considering trials as non-related, ii) including the environmental relationship matrix calculated from ECs, iii) within clusters; iv) sampling one location per cluster. Finally, we weigh the trial's allocation considering the counties' economic importance and the environmental group to which they belong. Our findings show that eight ECs explained 58% of grain yield variation across sites and 53% of the observed genotype-by-environment interaction. Moreover, it is possible to reduce 28% the number of locations without significant loss in accuracy. Furthermore, the US Rice belt comprises four clusters, with economic importance varying from 13 to 45%. These results will help us better allocate trials in advance and reduce costs without penalizing accuracy.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537932/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142590573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of UV-A/B/C on flavonoids and related synthetic enzymes in Tetrastigma hemsleyanum. 紫外线 A/B/C 对 Tetrastigma hemsleyanum 中黄酮类化合物及相关合成酶的影响。
IF 4.1 2区 生物学
Frontiers in Plant Science Pub Date : 2024-10-23 eCollection Date: 2024-01-01 DOI: 10.3389/fpls.2024.1477280
Shan Li, Jingqing Xia, Shouzan Liu, Zhe Li, Qiong Shen, Feng Yang, Xinhong Liu, Yan Bai
{"title":"Effects of UV-A/B/C on flavonoids and related synthetic enzymes in <i>Tetrastigma hemsleyanum</i>.","authors":"Shan Li, Jingqing Xia, Shouzan Liu, Zhe Li, Qiong Shen, Feng Yang, Xinhong Liu, Yan Bai","doi":"10.3389/fpls.2024.1477280","DOIUrl":"10.3389/fpls.2024.1477280","url":null,"abstract":"<p><strong>Introduction: </strong><i>Tetrastigma hemsleyanum</i> is a folk and rare medicinal plant, and specifically, it is distributed in the south, China. To investigate the cumulative properties of its medicinal components, we examined the effect of UV light on flavonoid content and related enzyme activity changes in <i>T. hemsleyanum</i>.</p><p><strong>Methods: </strong>The leaves and tubers were treated with UV-A, UV-B and UV-C for 1 h, 1L/23D h, 3 h and 3L/21D h (D represents darkness treatment). High-performance liquid chromatography (HPLC) analysis showed that the content of many flavonoids decreased significantly during UV-A treatment, increased after UV-B and UV-C irradiation and accumulated again after darkness treatment.</p><p><strong>Results: </strong>In the root tubers of the UV-A group, naringin content in the 3L/21D h group (0.069 μg/g) was 16.30 times higher than that of 3 h group (0.0042 μg/g). The rutin content was elevated after UV irradiation but was not detected in the CK group. The test results of the enzyme-linked kit indicated that the activities of many enzymes were higher in the UV-A and UV-B irradiation groups than those in the CK group, but the results were reversed in the UV-C treatment. After darkness treatment, the activities of most enzymes were higher than those with UV irradiation alone; F3'5'H activity in the 3L/21D h group (97.25 U/L) was 1.24 times higher than that in the 3 h group (78.12 U/L) in the UV-A-treated group.</p><p><strong>Discussion: </strong>The study results suggest that appropriate UV-B and UV-C irradiation, as well as darkness supplementation, had a promotive effect on flavonoids in the leaves and root tubers of <i>T. hemsleyanum</i>. Additionally, UV irradiation and darkness treatment enhanced the activity of most enzymes.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537892/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142590567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial: Edible halophytes for a sustainable agriculture: from neglected species to new crops. 社论:促进可持续农业的食用卤植物:从被忽视的物种到新作物。
IF 4.1 2区 生物学
Frontiers in Plant Science Pub Date : 2024-10-22 eCollection Date: 2024-01-01 DOI: 10.3389/fpls.2024.1504271
Angelo Signore, Massimiliano Renna, Juan A Fernández
{"title":"Editorial: Edible halophytes for a sustainable agriculture: from neglected species to new crops.","authors":"Angelo Signore, Massimiliano Renna, Juan A Fernández","doi":"10.3389/fpls.2024.1504271","DOIUrl":"https://doi.org/10.3389/fpls.2024.1504271","url":null,"abstract":"","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534584/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142582596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptation to reductions in chilling availability using variation in PLANT HOMOLOGOUS TO PARAFIBROMIN in Brassica napus. 利用甘蓝型油菜中对氨基甲酸乙酯同源物的变异来适应冷冻可用性的降低。
IF 4.1 2区 生物学
Frontiers in Plant Science Pub Date : 2024-10-22 eCollection Date: 2024-01-01 DOI: 10.3389/fpls.2024.1481282
Samuel Warner, Carmel M O'Neill, Rebecca Doherty, Rachel Wells, Steven Penfield
{"title":"Adaptation to reductions in chilling availability using variation in <i>PLANT HOMOLOGOUS TO PARAFIBROMIN</i> in <i>Brassica napus</i>.","authors":"Samuel Warner, Carmel M O'Neill, Rebecca Doherty, Rachel Wells, Steven Penfield","doi":"10.3389/fpls.2024.1481282","DOIUrl":"10.3389/fpls.2024.1481282","url":null,"abstract":"<p><p>Winter annual crops are sown in late summer or autumn and require chilling to promote flowering the following spring. Floral initiation begins in autumn and winter, and in winter oilseed rape (OSR), continued chilling during flower development is necessary for high yield potential. This can be a problem in areas where chilling is not guaranteed, or as a result of changing climates. Here, we used chilling disruption and low chilling to identify loci with the potential to increase chilling efficiency in winter OSR. We report that time to flowering and yield potential under low chill conditions are affected by variation at the <i>PLANT HOMOLOGOUS TO PARAFIBROMIN</i> gene, a component of the plant PAF1c complex. We show that increases in winter chilling given to developing flowers can improve seed yields and that loss of function of <i>BnaPHP.A05</i> leads to early flowering in <i>B. rapa</i> and <i>B. napus</i> and an increase in seed set where chilling is limited. Because <i>PHP</i> is known to specifically target the <i>FLOWERING LOCUS C</i> (<i>FLC</i>) gene in Arabidopsis, we propose that variation at <i>PHP</i> is useful for breeding modifications to chilling responses in polyploid crops with multiple copies of the <i>FLC</i> gene.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534679/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142582575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Environmental impacts and nitrogen-carbon-energy nexus of vegetable production in subtropical plateau lake basins. 亚热带高原湖泊流域蔬菜生产的环境影响和氮碳能源关系。
IF 4.1 2区 生物学
Frontiers in Plant Science Pub Date : 2024-10-22 eCollection Date: 2024-01-01 DOI: 10.3389/fpls.2024.1472978
Yousheng He, Ruifeng Su, Yuan Wang, Shunjin Li, Qi Huang, Xinping Chen, Wei Zhang, Zhi Yao
{"title":"Environmental impacts and nitrogen-carbon-energy nexus of vegetable production in subtropical plateau lake basins.","authors":"Yousheng He, Ruifeng Su, Yuan Wang, Shunjin Li, Qi Huang, Xinping Chen, Wei Zhang, Zhi Yao","doi":"10.3389/fpls.2024.1472978","DOIUrl":"10.3389/fpls.2024.1472978","url":null,"abstract":"<p><p>Vegetables are important economic crops globally, and their production has approximately doubled over the past 20 years. Globally, vegetables account for 13% of the harvested area but consume 25% of the fertilizer, leading to serious environmental impacts. However, the quantitative evaluation of vegetable production systems in subtropical plateau lake basins and the establishment of optimal management practices to further reduce environmental risks are still lacking. Using the life cycle assessment method, this study quantified the global warming, eutrophication, acidification, and energy depletion potential of vegetable production in a subtropical plateau lake basin in China based on data from 183 farmer surveys. Our results indicated that vegetable production in the study area, the Erhai Lake Basin, was high but came at a high environmental cost, mainly due to low fertilizer efficiency and high nutrient loss. Root vegetables have relatively high environmental costs due to the significant environmental impacts of fertilizer production, transportation, and application. A comprehensive analysis showed that the vegetable production in this region exhibited low economic and net ecosystem economic benefits, with ranges of 7.88-8.91 × 10<sup>3</sup> and 7.35-8.69 × 10<sup>3</sup> $ ha<sup>-1</sup>, respectively. Scenario analysis showed that adopting strategies that comprehensively consider soil, crop, and nutrient conditions for vegetable production can reduce environmental costs (with reductions in global warming potential (GWP), eutrophication potential (EP), acidification potential (AP), and energy depletion potential (EDP) by 10.6-28.2%, 65.1-73.5%, 64.5-71.9%, 47.8-70.4%, respectively) compared with the current practices of farmers. This study highlighted the importance of optimizing nutrient management in vegetable production based on farmers' practices, which can achieve more yield with less environmental impacts and thereby avoid the \"trade-off\" effect between productivity and environmental sustainability.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534706/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142582628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Partial substitution of phosphorus fertilizer with iron-modified biochar improves root morphology and yield of peanut under film mulching. 用铁改性生物炭部分替代磷肥可改善地膜覆盖下花生根系形态并提高产量
IF 4.1 2区 生物学
Frontiers in Plant Science Pub Date : 2024-10-22 eCollection Date: 2024-01-01 DOI: 10.3389/fpls.2024.1459751
Xiulan Luo, Dewei Wang, Yuting Liu, Yuanze Qiu, Junlin Zheng, Guimin Xia, Ahmed Elbeltagi, Daocai Chi
{"title":"Partial substitution of phosphorus fertilizer with iron-modified biochar improves root morphology and yield of peanut under film mulching.","authors":"Xiulan Luo, Dewei Wang, Yuting Liu, Yuanze Qiu, Junlin Zheng, Guimin Xia, Ahmed Elbeltagi, Daocai Chi","doi":"10.3389/fpls.2024.1459751","DOIUrl":"10.3389/fpls.2024.1459751","url":null,"abstract":"<p><strong>Introduction: </strong>Peanut production is being increasingly threatened by water stress with the context of global climate change. Film mulching have been reported to alleviate the adverse impact of drought on peanut. Lower phosphorus use efficiency is another key factor limiting peanut yield. Application of iron-modified and phosphorus-loaded biochar (B<sub>IP</sub>) has been validated to enhance phosphorus utilization efficiency in crops. However, whether combined effect of film mulching and B<sub>IP</sub> could increase water use efficiency and enhance peanut production through regulating soil properties and root morphologies needs further investigation.</p><p><strong>Methods: </strong>A two-year (2021-2022) pot experiment using a split-plot design was conducted to investigate the effects of phosphorus fertilizer substitution using B<sub>IP</sub> on soil properties, root morphology, pod yield, and water use of peanut under film mulching. The main plots were two mulching methods, including no mulching (M0) and film mulching (M1). The subplots were four combined applications of phosphorus fertilizer with B<sub>IP</sub>, including conventional phosphorus fertilizer rates (PCR) without B<sub>IP</sub>, P1C0; 3/4 PCR with 7.5 t ha<sup>-1</sup> B<sub>IP</sub>, P2C1; 3/4 PCR with 15 t ha<sup>-1</sup> B<sub>IP</sub>, P2C2; 2/3 PCR with 7.5 t ha<sup>-1</sup> B<sub>IP</sub>, P3C1; 2/3 PCR with 15 t ha<sup>-1</sup> B<sub>IP</sub>, P3C2.</p><p><strong>Results and discussion: </strong>The results indicated that regardless of biochar amendments, compared with M0, M1 increased soil organic matter and root morphology of peanut at different growth stages in both years. In addition, M1 increased peanut yield and water use efficiency (WUE) by 18.8% and 51.6%, respectively, but decreased water consumption by 25.0%, compared to M0 (two-year average). Irrespective of film mulching, P2C1 increased length, surface area, and volume of peanut root at seedling by 16.7%, 17.7%, and 18.6%, at flowering by 6.6%, 19.9%, and 29.5%, at pod setting by 22.9%, 33.8%, and 37.3%, and at pod filling by 48.3%, 9.5%, and 38.2%, respectively (two-year average), increased soil pH and organic matter content during peanut growing season, and increased soil CEC at harvest. In general, the M1P2C1 treatment obtained the optimal root morphology, soil chemical properties, WUE, and peanut yield, which increased peanut yield by 33.2% compared to M0P1C0. In conclusion, the combination of film mulching with 7.5 t ha<sup>-1</sup> B<sub>IP</sub> (M1P2C1) effectively improved soil chemical properties, enhanced root morphology of peanut, and ultimately increased peanut yield and WUE.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11535512/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142582650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Validation of QTLs associated with corn borer resistance and grain yield: implications in maize breeding. 与玉米螟抗性和谷物产量相关的 QTLs 验证:对玉米育种的影响。
IF 4.1 2区 生物学
Frontiers in Plant Science Pub Date : 2024-10-22 eCollection Date: 2024-01-01 DOI: 10.3389/fpls.2024.1404881
Ana López-Malvar, Zoila Reséndiz-Ramirez, Ana Butrón, Jose Cruz Jiménez-Galindo, Pedro Revilla, Rosa Ana Malvar
{"title":"Validation of QTLs associated with corn borer resistance and grain yield: implications in maize breeding.","authors":"Ana López-Malvar, Zoila Reséndiz-Ramirez, Ana Butrón, Jose Cruz Jiménez-Galindo, Pedro Revilla, Rosa Ana Malvar","doi":"10.3389/fpls.2024.1404881","DOIUrl":"10.3389/fpls.2024.1404881","url":null,"abstract":"<p><strong>Introduction: </strong>Validations of previously detected quantitative trait loci (QTLs) to assess their reliability are crucial before implementing breeding programs. The objective of this study was to determine the reliability and practical usefulness of previously reported QTLs for resistance to stem tunneling by the Mediterranean stem borer (MSB) and yield. These authors used approximately 600 recombinant inbred lines (RILs) from a multiparent advanced generation intercross (MAGIC) population to map QTL using a genome-wide association study (GWAS) approach.</p><p><strong>Methods: </strong>We identified RILs situated at the extremes of resistance and yield distributions within the whole MAGIC, and those QTLs were evaluated <i>per se</i> and crossed to a tester (A638) using lattice designs. In each set, a significant single-nucleotide polymorphism (SNP) was considered validated if (1) the same SNP was associated with the trait with a <i>p</i>-value < 0.02, or (2) within a ±2-Mbp interval, an SNP associated with the trait exhibited a <i>p</i>-value < 0.02 and demonstrated linkage disequilibrium (<i>r</i>2 > 0.2) with the SNPs previously reported.</p><p><strong>Results and discussion: </strong>The novel QTL validation approach was implemented using improved experimental designs that led to higher heritability estimates for both traits compared to those estimated with the whole MAGIC population. The procedure used allowed us to jointly validate several QTL and to ascertain their possible contribution to hybrid improvement. Specifically, nearly three-quarters of the QTLs for tunnel length were confirmed. Notably, QTLs located in the genomic region 6.05-6.07 were consistently validated across different sets and have been previously linked to resistance against stalk tunneling in various mapping populations. For grain yield, approximately 10 out of 16 QTLs were validated. The validation rate for yield was lower than for tunnel length, likely due to the influence of dominance and/or epistatic effects. Overall, 9 out of 21 QTLs for tunnel length and 6 out of 17 QTLs for grain yield identified in our previous research were validated across both validation sets, indicating a moderate genetic correlation between <i>per se</i> and testcross performance of inbred lines. These findings offer insights into the reliability of QTL and genomic predictions, both derived from assessments conducted on the entire MAGIC population. Genomic predictions for tunnel length based on inbred line evaluations could be useful to develop more resistant hybrids; meanwhile, genomic prediction for yield could only be valid in a homozygous background.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536317/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142582670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating the influence of selenium and epibrassinolide on antioxidant activity, proline accumulation, and protein expression profiles in wheat plants experiencing heat and drought stress. 研究硒和表抗坏血酸内酯对热胁迫和干旱胁迫下小麦植物抗氧化活性、脯氨酸积累和蛋白质表达谱的影响
IF 4.1 2区 生物学
Frontiers in Plant Science Pub Date : 2024-10-22 eCollection Date: 2024-01-01 DOI: 10.3389/fpls.2024.1441483
Tanveer Alam Khan, Aqeel Ahmad, Taiba Saeed, Mohammad Yusuf, Mohammad Faisal, Abdulrahman Alatar Alatar
{"title":"Investigating the influence of selenium and epibrassinolide on antioxidant activity, proline accumulation, and protein expression profiles in wheat plants experiencing heat and drought stress.","authors":"Tanveer Alam Khan, Aqeel Ahmad, Taiba Saeed, Mohammad Yusuf, Mohammad Faisal, Abdulrahman Alatar Alatar","doi":"10.3389/fpls.2024.1441483","DOIUrl":"10.3389/fpls.2024.1441483","url":null,"abstract":"<p><p>In the current investigation, the combination of selenium (Se) and epibrassinolide (EBL) exhibited a promising alleviative response against the concurrent stress of heat and drought in wheat plants. The compromised growth and photosynthetic performance of wheat plants under the combined stress of heat and drought were substantially improved with the treatment involving Se and EBL. This improvement was facilitated through the expression of Q9FIE3 and O04939 proteins, along with enhanced antioxidant activities. The heightened levels of antioxidant enzymes and the accumulation of osmoprotectant proline helped mitigate the overaccumulation of reactive oxygen species (ROS), including electrolyte leakage, H<sub>2</sub>O<sub>2</sub> accumulation, and lipid peroxidation, thus conferring tolerance against the combined stress of heat and drought. Studies have demonstrated that Se and EBL can assist wheat plants in recuperating from the adverse effects of heat and drought. As such, they are essential components of sustainable farming methods that aim to increase crop productivity.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534860/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142582631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信