{"title":"Minimal differences observed when comparing the morphological profiling of microglia obtained by confocal laser scanning and optical sectioning microscopy.","authors":"Sânziana Godeanu, Mădălina Iuliana Mușat, Anja Scheller, Eugen Osiac, Bogdan Cătălin","doi":"10.3389/fnana.2024.1507140","DOIUrl":"10.3389/fnana.2024.1507140","url":null,"abstract":"<p><strong>Background: </strong>While widefield microscopy has long been constrained by out-of-focus scattering, advancements have generated a solution in the form of confocal laser scanning microscopy (cLSM) and optical sectioning microscopy using structured illumination (OSM). In this study, we aim to investigate, using microglia branching, if cLSM and OSM can produce images with comparable morphological characteristics.</p><p><strong>Results: </strong>By imaging the somatosensory microglia from a tissue slice of a 3-week-old mouse and establishing morphological parameters that characterizes the microglial branching pattern, we were able to show that there is no difference in total length of the branch tree, number of branches, mean branch length and number of primary to terminal branches. We did find that area-based parameters such as mean occupied area and mean surveillance area were bigger in cLSM isolated microglia compared to OSM ones. Additionally, by investigating the difference in acquisition time between techniques and personal costs we were able to establish that the amortization could be made in 6.11 ± 2.93 years in the case of countries with a Human Development Index (HDI) = 7-9 and 7.06 ± 3.13 years, respectably, for countries with HDI < 7. As such, OSM systems seem a valid option if one just wants basic histological evaluation, and cLSM should be considered for groups that demand higher resolution or volumetric images.</p>","PeriodicalId":12572,"journal":{"name":"Frontiers in Neuroanatomy","volume":"18 ","pages":"1507140"},"PeriodicalIF":2.1,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11739110/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143003876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Frontiers in NeuroanatomyPub Date : 2024-12-18eCollection Date: 2024-01-01DOI: 10.3389/fnana.2024.1463632
Julie Meystre, Jean Jacquemier, Olivier Burri, Csaba Zsolnai, Nicolas Frank, João Prado Vieira, Ying Shi, Rodrigo Perin, Daniel Keller, Henry Markram
{"title":"Cell density quantification of high resolution Nissl images of the juvenile rat brain.","authors":"Julie Meystre, Jean Jacquemier, Olivier Burri, Csaba Zsolnai, Nicolas Frank, João Prado Vieira, Ying Shi, Rodrigo Perin, Daniel Keller, Henry Markram","doi":"10.3389/fnana.2024.1463632","DOIUrl":"10.3389/fnana.2024.1463632","url":null,"abstract":"<p><p>Nissl histology underpins our understanding of brain anatomy and architecture. Despite its importance, no high-resolution datasets are currently available in the literature for 14-day-old rats. To remedy this issue and demonstrate the utility of such a dataset, we have acquired over 2000 high-resolution images (0.346 μm per pixel) from eight juvenile rat brains stained with cresyl violet. To analyze this dataset, we developed a semi-automated pipeline using open-source software to perform cell density quantification in the primary somatosensory hindlimb (S1HL) cortical column. In addition, we performed cortical layer annotations both manually and using a machine learning model to expand the number of annotated samples. After training the model, we applied it to 262 images of the S1HL, retroactively assigning segmented cells to specific cortical layers, enabling cell density quantification per layer rather than just for entire brain regions. The pipeline improved the efficiency and reliability of cell density quantification while accurately assigning cortical layer boundaries. Furthermore, the method is adaptable to different brain regions and cell morphologies. The full dataset, annotations, and analysis tools are made publicly available for further research and applications.</p>","PeriodicalId":12572,"journal":{"name":"Frontiers in Neuroanatomy","volume":"18 ","pages":"1463632"},"PeriodicalIF":2.1,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11688196/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142914332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Frontiers in NeuroanatomyPub Date : 2024-12-16eCollection Date: 2024-01-01DOI: 10.3389/fnana.2024.1511951
Maria E Bianchetti, Ana Flavia F Ferreira, Luiz R G Britto
{"title":"Inhibition of neuroinflammation by GIBH-130 (AD-16) reduces neurodegeneration, motor deficits, and proinflammatory cytokines in a hemiparkinsonian model.","authors":"Maria E Bianchetti, Ana Flavia F Ferreira, Luiz R G Britto","doi":"10.3389/fnana.2024.1511951","DOIUrl":"10.3389/fnana.2024.1511951","url":null,"abstract":"<p><p>Parkinson's disease (PD) is a neurodegenerative condition characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNc) of the brain, manifesting itself with both motor and non-motor symptoms. A critical element of this pathology is neuroinflammation, which triggers a harmful neurotoxic cycle, exacerbating cell death within the central nervous system. AD-16 (also known as GIBH-130) is a recently identified compound capable of reducing the expression of pro-inflammatory cytokines while increasing the expression of anti-inflammatory cytokines in Alzheimer's disease models. Here, for the first time, we sought to comprehend the potential impact of orally administered AD-16 in mitigating neurodegeneration and subsequent disease progression in PD. To accomplish this, 6- hydroxydopamine (6-OHDA) unilateral striatal injections were employed to induce a PD model in male C57BL/6 mice. Cylinder and apomorphine-induced rotation behavior tests were conducted to assess motor behavior and validate the PD model 3 days after the injection. AD-16 was administered via gavage daily between days 3 and 9 after surgery. On the last day of treatment, motor tests were performed again. All animals were euthanized on day 10 and immunohistochemistry techniques were performed to detect tyrosine hydroxylase (TH) and Iba-1 and thus label dopaminergic neurons and microglia in the SNc and striatum (CPu). These same regions were collected for ELISA assays to assess different cytokine concentrations. Our results revealed an enhancement in the motor function of the AD-16-treated animals, as well as reduced nigrostriatal neurodegeneration. In addition, AD-16 reduced the increase in microglia density and prevented the changes in its morphology observed in the PD animal models. Furthermore, AD-16 was able to avoid the increase of pro-inflammatory cytokines levels that were present in 6-OHDA-injected animals who received vehicle. Consequently, AD-16 emerges as a compound with significant potential for negative modulation of neurodegeneration and neuroinflammation suppression in the 6-OHDA animal model of Parkinson's disease.</p>","PeriodicalId":12572,"journal":{"name":"Frontiers in Neuroanatomy","volume":"18 ","pages":"1511951"},"PeriodicalIF":2.1,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11684390/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142906824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bridging veins: an analysis of surgical anatomy and histology correlated with interhemispheric approaches.","authors":"Yuanliang Ye, TianCai Lan, Xiangbo Zeng, Jianqing Yang, Ruixiang Wei, Jiale Zhu, Moukun Liu, Xiaowen Zhu","doi":"10.3389/fnana.2024.1406252","DOIUrl":"10.3389/fnana.2024.1406252","url":null,"abstract":"<p><p>Damage to bridging veins could lead to disastrous complications during interhemispheric approaches. We investigated the morphological and histological characteristics of bridging veins. A total of 10 cadaveric heads and 86 patients were analyzed with either anatomic dissection or neuroimaging. The morphological features of the bridging veins and superior sagittal sinus were analyzed by the endoscope. The histology of the junction between the bridging veins and superior sagittal sinus was evaluated under the microscope with staining for H&E, elastic fiber, and Masson's staining. We found three types of bridging vein configurations in the junction between the bridging vein and superior sagittal sinus: direct connection (type A), vein runs a certain distance below the dural wall tightly (type B), and vein runs a certain distance on the lateral sinus (type C). Valvular-like fibrous cords were present on the opening of type A, trabecular in type B, and arachnoid granules in type C. Loose connective tissue connected the venous wall and dura mater in type A, sinus wall forms the inner wall of the bridging vein in type B, bridging vein accompanied by arachnoid granules in the type C. This classification enables surgeons to predict various bridging vein configurations, followed by safely achieving the optimal dissection during interhemispheric approaches.</p>","PeriodicalId":12572,"journal":{"name":"Frontiers in Neuroanatomy","volume":"18 ","pages":"1406252"},"PeriodicalIF":2.1,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11634616/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142817782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Differential effects of prolonged post-fixation on immunohistochemical and histochemical staining for postmortem human brains.","authors":"Weiya Ma, Eve-Marie Frigon, Josefina Maranzano, Yashar Zeighami, Mahsa Dadar","doi":"10.3389/fnana.2024.1477973","DOIUrl":"10.3389/fnana.2024.1477973","url":null,"abstract":"<p><strong>Purpose: </strong>Immunohistochemical (IHC) and histochemical (HC) staining techniques are widely used on human brains that are post-fixed in formalin and stored in brain banks worldwide for varying durations, from months to decades. Understanding the effects of prolonged post-fixation, postmortem interval (PMI), and age on these staining procedures is important for accurately interpreting their outcomes, thereby improving the diagnosis and research of brain disorders afflicting millions of people worldwide.</p><p><strong>Methods: </strong>In this study, we conducted both IHC and HC staining on the prefrontal cortex of postmortem human brains post-fixed for 1, 5, 10, 15, and 20 years. For IHC staining, we used two antibodies for each marker: the neuron marker neuronal nuclear antigen (NeuN), the astrocyte marker glial fibrillary acidic protein (GFAP), and the microglia marker ionized calcium-binding adaptor molecule 1 (Iba1). For HC staining, we conducted hematoxylin and eosin Y (H&E), cresyl violet (CV), and Luxol fast blue (LFB) stains to examine neuropils, neurons, and myelin, respectively.</p><p><strong>Results: </strong>We observed that the intensity of NeuN, Iba1, CV, or LFB staining was negatively correlated with post-fixation durations. Conversely, we detected a positive correlation between the intensity of GFAP and H&E staining and post-fixation durations. Moreover, there was no correlation between the intensity of NeuN, GFAP, Iba1, H&E, CV, and LFB staining and PMI. Additionally, no correlation was found between these staining intensities and age, except for the intensity of GFAP immunostained by one antiserum, which was negatively correlated with age.</p><p><strong>Conclusion: </strong>Taken together, these findings suggest that prolonged post-fixation has both positive and negative effects, while age and PMI exert limited influence on these IHC and HC parameters. Therefore, it is essential to consider these differential changes when interpreting results derived from tissues with extended post-fixation durations. Furthermore, if feasible, we recommend conducting IHC and HC staining on human brains with the same post-fixation time spans and using the most optimal antibodies to mitigate the impact on subsequent analyses.</p>","PeriodicalId":12572,"journal":{"name":"Frontiers in Neuroanatomy","volume":"18 ","pages":"1477973"},"PeriodicalIF":2.1,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602276/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142749663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterization of clock proteins in the substantia nigra and subthalamic nucleus of the <i>Sapajus apella</i> primate.","authors":"Leila Maria Guissoni Campos, Gyovanna Sorrentino Dos Santos Campanari, Jeferson Santiago, Eduardo Vinicius Barboza Santos, Alana Cristy Ghiraldelli Santos, Mayara Longui Cabrini, Mauro Audi, Isabela Bazzo Costa, Viviane Canhizares Evangelista de Araujo, Stephannie Monaco Bodra, Maressa Monteiro Pereira Gualassi, Lívia Clemente Motta-Teixeira, Luciana Pinato","doi":"10.3389/fnana.2024.1480971","DOIUrl":"10.3389/fnana.2024.1480971","url":null,"abstract":"<p><p>Clock genes, which are essential for suprachiasmatic nucleus (SCN) function, also play critical roles in other brain regions, and their expression have been the subject of various studies. An increasingly deeper understanding of the expression of these genes in different species contributes to our knowledge of their functions and the factors influencing their expression. Considering that most studies have been conducted in nocturnal rodents, in this study we investigated the presence of Per1, Per2 and Cry1 in neurons of the substantia nigra (SN) and subthalamic nucleus (STN) in a diurnal primate. The immunoreactivity of Per1, Per2, and Cry1 was analyzed using immunohistochemistry, revealing significant Per1-IR, Per2-IR, and Cry1-IR in the SN. While Per1-IR and Per2-IR were also observed in the STN, no Cry1-IR staining was detected in the STN. These results confirm the presence of proteins that regulate circadian rhythms in areas associated with motor behavior.</p>","PeriodicalId":12572,"journal":{"name":"Frontiers in Neuroanatomy","volume":"18 ","pages":"1480971"},"PeriodicalIF":2.1,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11598418/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142739267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Anatomical study of single incision contralateral C7 nerve transfer through subdural pathway.","authors":"Long Yao, Zhengcun Yan, Xiaodong Wang, Jiaxiang Gu, Hongjun Liu, Hengzhu Zhang","doi":"10.3389/fnana.2024.1470913","DOIUrl":"10.3389/fnana.2024.1470913","url":null,"abstract":"<p><strong>Objective: </strong>To explore the feasibility of single incision C7 nerve transfer surgery through the subarachnoid pathway on the healthy side through anatomical research.</p><p><strong>Method: </strong>Four fresh frozen cadaver specimens were used for the study. Observe and measure the length of C7 nerve root fibers. Divide the front root into 3 bundles and the rear root into 5 bundles.</p><p><strong>Result: </strong>The C7 nerve has a filamentous structure, arranged symmetrically on both sides, and the length of the root fibers gradually shortens from top to bottom. The length of the left anterior root decreased from (12.25 ± 0.68) mm to (9.75 ± 1.40) mm, the length of the right anterior root decreased from (12.95 ± 1.49) mm to (10.00 ± 2.00) mm, the length of the left posterior root decreased from (15.63 ± 1.55) mm to (12.38 ± 0.71) mm, and the length of the right posterior root decreased from (15.48 ± 1.37) mm to (12.30 ± 0.90) mm. The distance from the exit of the C7 nerve from the dura mater to the fusion site in 4 specimens was (10.98 ± 1.21) mm on the left and (10.98 ± 1.391) mm on the right. All four specimens have completed nerve bundle anastomosis.</p><p><strong>Conclusion: </strong>From an anatomical perspective, it is feasible to anastomose the healthy side C7 nerve with the affected side root fibers in the dorsal bundle of the spinal cord after cutting off the dura mater.</p>","PeriodicalId":12572,"journal":{"name":"Frontiers in Neuroanatomy","volume":"18 ","pages":"1470913"},"PeriodicalIF":2.1,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557413/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142618303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Frontiers in NeuroanatomyPub Date : 2024-10-29eCollection Date: 2024-01-01DOI: 10.3389/fnana.2024.1419108
Luiz Fernando A T Pedrão, Pamela O S Medeiros, Estela C Leandro, Barbara Falquetto
{"title":"Parkinson's disease models and death signaling: what do we know until now?","authors":"Luiz Fernando A T Pedrão, Pamela O S Medeiros, Estela C Leandro, Barbara Falquetto","doi":"10.3389/fnana.2024.1419108","DOIUrl":"https://doi.org/10.3389/fnana.2024.1419108","url":null,"abstract":"<p><p>Parkinson's disease (PD) is the second neurodegenerative disorder most prevalent in the world, characterized by the loss of dopaminergic neurons in the Substantia Nigra (SN). It is well known for its motor and non-motor symptoms including bradykinesia, resting tremor, psychiatric, cardiorespiratory, and other dysfunctions. Pathological apoptosis contributes to a wide variety of diseases including PD. Various insults and/or cellular phenotypes have been shown to trigger distinct signaling events leading to cell death in neurons affected by PD. The intrinsic or mitochondrial pathway, inflammatory or oxidative stress-induced extrinsic pathways are the main events associated with apoptosis in PD-related neuronal loss. Although SN is the main brain area studied so far, other brain nuclei are also affected by the disease leading to non-classical motor symptoms as well as non-motor symptoms. Among these, the respiratory symptoms are often overlooked, yet they can cause discomfort and may contribute to patients shortened lifespan after disease diagnosis. While animal and <i>in vitro</i> models are frequently used to investigate the mechanisms involved in the pathogenesis of PD in both the SN and other brain regions, these models provide only a limited understanding of the disease's actual progression. This review offers a comprehensive overview of some of the most studied forms of cell death, including recent research on potential treatment targets for these pathways. It highlights key findings and milestones in the field, shedding light on the potential role of understanding cell death in the prevention and treatment of the PD. Therefore, unraveling the connection between these pathways and the notable pathological mechanisms observed during PD progression could enhance our comprehension of the disease's origin and provide valuable insights into potential molecular targets for the developing therapeutic interventions.</p>","PeriodicalId":12572,"journal":{"name":"Frontiers in Neuroanatomy","volume":"18 ","pages":"1419108"},"PeriodicalIF":2.1,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555652/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142617029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Frontiers in NeuroanatomyPub Date : 2024-10-23eCollection Date: 2024-01-01DOI: 10.3389/fnana.2024.1454095
Benjamin Vittrant, Hanna Ayoub, Philippe Brunswick
{"title":"From Sudoscan to bedside: theory, modalities, and application of electrochemical skin conductance in medical diagnostics.","authors":"Benjamin Vittrant, Hanna Ayoub, Philippe Brunswick","doi":"10.3389/fnana.2024.1454095","DOIUrl":"https://doi.org/10.3389/fnana.2024.1454095","url":null,"abstract":"<p><p>The human body has two main types of sweat glands: apocrine and eccrine. Eccrine glands are widely distributed across the skin, including areas with hair. While the eccrine glands on palms and soles help improve grip, those on the rest of the body primarily aid in thermoregulation. Sudomotor function, which controls sweating, is regulated by the sympathetic division of the autonomic nervous system through cholinergic and adrenergic pathways. The activation of eccrine glands involves intricate processes, including neurotransmitter binding, ion channel modulation, and voltage generation. Sudoscan technology utilizes electrochemical skin conductance (ESC) to non-invasively measure sudomotor function. This method, which has been standardized for accuracy, has established normative benchmarks and has proven reliable across diverse populations. Sudoscan's diagnostic performance is comparable to invasive methods such as intraepidermal nerve fiber density testing, making it a valuable tool for diagnosing small fiber neuropathy. Moreover, it has been shown to correlate with corneal nerve fiber length, providing insights into various neuropathic conditions. Compared to traditional sudomotor function tests, Sudoscan proves superior in terms of its accessibility, simplicity, and reliability, with the potential to replace or complement existing diagnostic methods. It is important to differentiate ESC, as measured by Sudoscan, from other skin conductance measures, such as galvanic skin response (GSR) or electrodermal activity (EDA). Although these methods share a common physiological principle, ESC is specifically designed for diagnosing sudomotor function, unlike GSR/EDA, which is typically used for continuous monitoring. Sudoscan's success has led to its integration into consumer health devices, such as the BodyScan from Withings, showcasing its versatility beyond clinical settings. Future research may explore ESC applications in diverse medical fields, leveraging real-world data from integrated consumer devices. Collaborative efforts between researchers and engineers promise to offer new insights into sudomotor function and its implications for broader health monitoring. This study provides a comprehensive overview of ESC, including topics such as eccrine gland physiology, sudomotor function, Sudoscan technology, normative benchmarks, diagnostic comparisons, and potential future applications.</p>","PeriodicalId":12572,"journal":{"name":"Frontiers in Neuroanatomy","volume":"18 ","pages":"1454095"},"PeriodicalIF":2.1,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11551929/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142618305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Frontiers in NeuroanatomyPub Date : 2024-10-23eCollection Date: 2024-01-01DOI: 10.3389/fnana.2024.1507122
Toru Takahata, Song-Lin Ding
{"title":"Editorial: 15 years of frontiers in neuroanatomy: the circuits behind the visual cortex.","authors":"Toru Takahata, Song-Lin Ding","doi":"10.3389/fnana.2024.1507122","DOIUrl":"https://doi.org/10.3389/fnana.2024.1507122","url":null,"abstract":"","PeriodicalId":12572,"journal":{"name":"Frontiers in Neuroanatomy","volume":"18 ","pages":"1507122"},"PeriodicalIF":2.1,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541833/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}