Altered dendritic morphology of MEC II pyramidal and stellate cells in Rett syndrome mice.

IF 2.1 4区 医学 Q1 ANATOMY & MORPHOLOGY
Frontiers in Neuroanatomy Pub Date : 2025-06-24 eCollection Date: 2025-01-01 DOI:10.3389/fnana.2025.1580435
Manigandan Krishnan, Ayishal B Mydeen, Mohammed M Nakhal, Marwa F Ibrahim, Richard L Jayaraj, Milos R Ljubisavljevic, Mohammad I K Hamad, Fatima Y Ismail
{"title":"Altered dendritic morphology of MEC II pyramidal and stellate cells in Rett syndrome mice.","authors":"Manigandan Krishnan, Ayishal B Mydeen, Mohammed M Nakhal, Marwa F Ibrahim, Richard L Jayaraj, Milos R Ljubisavljevic, Mohammad I K Hamad, Fatima Y Ismail","doi":"10.3389/fnana.2025.1580435","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Mutations in the methyl-CpG-binding protein-2 gene (<i>MECP2</i>), which cause Rett syndrome (RTT), disrupt neuronal activity; however, the impact of the <i>MECP2</i> loss-of-function on the cytoarchitecture of medial entorhinal cortex layer II (MECII) neurons-crucial for spatial memory and learning-remains poorly understood.</p><p><strong>Methods: </strong>In this study, we utilized Golgi staining and neuron tracing in the <i>Mecp</i>2<sup>+/-</sup> mouse model of RTT to investigate the pyramidal and stellate cell alterations in MECII.</p><p><strong>Results and discussion: </strong>Our findings revealed that pyramidal cells displayed a significant reduction in apical dendritic length, soma size, and spine density, while basal dendrites showed increased dendritic complexity and branching. On the other hand, stellate cells exhibited dendritic hypertrophy along with increased soma size, primary dendrites, and localized increase in dendritic intersections, despite an overall reduction in total dendritic length and spine density. These findings underscore the notion that <i>MECP2</i> loss-of-function can disrupt MECII pyramidal and stellate cell cytoarchitecture in a cell-type-specific manner, emphasizing its critical role in maintaining proper dendritic morphology in circuits, which is crucial for learning and memory.</p>","PeriodicalId":12572,"journal":{"name":"Frontiers in Neuroanatomy","volume":"19 ","pages":"1580435"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12236101/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroanatomy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnana.2025.1580435","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Mutations in the methyl-CpG-binding protein-2 gene (MECP2), which cause Rett syndrome (RTT), disrupt neuronal activity; however, the impact of the MECP2 loss-of-function on the cytoarchitecture of medial entorhinal cortex layer II (MECII) neurons-crucial for spatial memory and learning-remains poorly understood.

Methods: In this study, we utilized Golgi staining and neuron tracing in the Mecp2+/- mouse model of RTT to investigate the pyramidal and stellate cell alterations in MECII.

Results and discussion: Our findings revealed that pyramidal cells displayed a significant reduction in apical dendritic length, soma size, and spine density, while basal dendrites showed increased dendritic complexity and branching. On the other hand, stellate cells exhibited dendritic hypertrophy along with increased soma size, primary dendrites, and localized increase in dendritic intersections, despite an overall reduction in total dendritic length and spine density. These findings underscore the notion that MECP2 loss-of-function can disrupt MECII pyramidal and stellate cell cytoarchitecture in a cell-type-specific manner, emphasizing its critical role in maintaining proper dendritic morphology in circuits, which is crucial for learning and memory.

Rett综合征小鼠MECⅱ锥体和星状细胞树突形态的改变。
导论:甲基cpg结合蛋白-2基因(MECP2)突变导致Rett综合征(RTT),破坏神经元活动;然而,MECP2功能丧失对内侧内嗅皮层第二层(MECII)神经元的细胞结构的影响-对空间记忆和学习至关重要-仍然知之甚少。方法:本研究采用高尔基染色法和神经元示踪法对Mecp2+/-小鼠RTT模型进行MECII锥体和星状细胞的改变研究。结果和讨论:我们的研究结果显示,锥体细胞的顶端树突长度、体细胞大小和脊柱密度显著减少,而基部树突的树突复杂性和分支增加。另一方面,尽管总体上树突长度和脊柱密度减少,但星状细胞表现出树突肥大,伴随着体细胞大小的增加、初级树突的增加和局部树突交叉的增加。这些发现强调了MECP2功能丧失可以以细胞类型特异性的方式破坏MECII锥体和星状细胞的细胞结构的概念,强调了其在维持适当的树突形态在电路中的关键作用,这对学习和记忆至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Neuroanatomy
Frontiers in Neuroanatomy ANATOMY & MORPHOLOGY-NEUROSCIENCES
CiteScore
4.70
自引率
3.40%
发文量
122
审稿时长
>12 weeks
期刊介绍: Frontiers in Neuroanatomy publishes rigorously peer-reviewed research revealing important aspects of the anatomical organization of all nervous systems across all species. Specialty Chief Editor Javier DeFelipe at the Cajal Institute (CSIC) is supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信