Genomics, Proteomics & Bioinformatics最新文献

筛选
英文 中文
Global Marine Cold Seep Metagenomes Reveal Diversity of Taxonomy, Metabolic Function, and Natural Products 全球海洋冷渗漏元基因组揭示了分类、代谢功能和天然产品的多样性
IF 9.5 2区 生物学
Genomics, Proteomics & Bioinformatics Pub Date : 2024-01-10 DOI: 10.1093/gpbjnl/qzad006
Tao Yu, Yingfeng Luo, Xinyu Tan, Dahe Zhao, Xiaochun Bi, Chenji Li, Yanning Zheng, Hua Xiang, Songnian Hu
{"title":"Global Marine Cold Seep Metagenomes Reveal Diversity of Taxonomy, Metabolic Function, and Natural Products","authors":"Tao Yu, Yingfeng Luo, Xinyu Tan, Dahe Zhao, Xiaochun Bi, Chenji Li, Yanning Zheng, Hua Xiang, Songnian Hu","doi":"10.1093/gpbjnl/qzad006","DOIUrl":"https://doi.org/10.1093/gpbjnl/qzad006","url":null,"abstract":"<jats:title>Abstract</jats:title> Cold seeps in the deep sea are closely linked to energy exploration as well as global climate change. The alkane-dominated chemical energy-driven model makes cold seeps an oasis of deep-sea life, showcasing an unparalleled reservoir of microbial genetic diversity. By analyzing 113 metagenomes collected from 14 global sites across 5 cold seep types, we present a comprehensive Cold Seep Microbiomic Database (CSMD) to archive the genomic and functional diversity of cold seep microbiome. The CSMD included over 49 million non-redundant genes and 3175 metagenome-assembled genomes (MAGs), which represented 1895 species spanning 105 phyla. In addition, beta diversity analysis indicated that both the sampling site and cold seep type had a substantial impact on the prokaryotic microbiome community composition. Heterotrophic and anaerobic metabolisms were prevalent in microbial communities, accompanied by considerable mixotrophs and facultative anaerobes, highlighting the versatile metabolic potential in cold seeps. Furthermore, secondary metabolic gene cluster analysis indicated that at least 98.81% of the sequences potentially encoded novel natural products, with ribosomal processing peptides being the predominant type widely distributed in archaea and bacteria. Overall, the CSMD represents a valuable resource that would enhance the understanding and utilization of global cold seep microbiomes.","PeriodicalId":12528,"journal":{"name":"Genomics, Proteomics & Bioinformatics","volume":null,"pages":null},"PeriodicalIF":9.5,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139922165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular Evolution of Protein Sequences and Codon Usage in Monkeypox Viruses 猴痘病毒蛋白质序列和密码使用的分子进化
IF 9.5 2区 生物学
Genomics, Proteomics & Bioinformatics Pub Date : 2024-01-10 DOI: 10.1093/gpbjnl/qzad003
Ke-jia Shan, Changcheng Wu, Xiaolu Tang, Roujian Lu, Yaling Hu, Wenjie Tan, Jian Lu
{"title":"Molecular Evolution of Protein Sequences and Codon Usage in Monkeypox Viruses","authors":"Ke-jia Shan, Changcheng Wu, Xiaolu Tang, Roujian Lu, Yaling Hu, Wenjie Tan, Jian Lu","doi":"10.1093/gpbjnl/qzad003","DOIUrl":"https://doi.org/10.1093/gpbjnl/qzad003","url":null,"abstract":"<jats:title>Abstract</jats:title> The monkeypox virus (mpox virus, MPXV) epidemic in 2022 has posed a significant public health risk. Yet, the evolutionary principles of MPXV remain largely unknown. Here, we examined the evolutionary patterns of protein sequences and codon usage in MPXV. We first demonstrated the signal of positive selection in OPG027, specifically in the Clade I lineage of MPXV. Subsequently, we discovered accelerated protein sequence evolution over time in the variants responsible for the 2022 outbreak. Furthermore, we showed strong epistasis between amino acid substitutions located in different genes. The codon adaptation index (CAI) analysis revealed that MPXV genes tended to use more non-preferred codons compared to human genes, and the CAI decreased over time and diverged between clades, with Clade I &amp;gt; IIa and IIb-A &amp;gt; IIb-B. While the decrease in fatality rate among the three groups aligned with the CAI pattern, it remains unclear whether this correlation was coincidental or if the deoptimization of codon usage in MPXV led to a reduction in fatality rates. This study sheds new light on the mechanisms that govern the evolution of MPXV in human populations.","PeriodicalId":12528,"journal":{"name":"Genomics, Proteomics & Bioinformatics","volume":null,"pages":null},"PeriodicalIF":9.5,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139922082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Whole-genome Sequencing Reveals Autooctoploidy in Chinese Sturgeon and Its Evolutionary Trajectories 全基因组测序揭示中华鲟自八倍体及其进化轨迹
IF 9.5 2区 生物学
Genomics, Proteomics & Bioinformatics Pub Date : 2024-01-10 DOI: 10.1093/gpbjnl/qzad002
Binzhong Wang, Bin Wu, Xueqing Liu, Yacheng Hu, Yao Ming, Mingzhou Bai, Juanjuan Liu, Kan Xiao, Qingkai Zeng, Jing Yang, Hongqi Wang, Baifu Guo, Chun Tan, Zixuan Hu, Xun Zhao, Yanhong Li, Zhen Yue, Junpu Mei, Wei Jiang, Yuanjin Yang, Zhiyuan Li, Yong Gao, Lei Chen, Jianbo Jian, Hejun Du
{"title":"Whole-genome Sequencing Reveals Autooctoploidy in Chinese Sturgeon and Its Evolutionary Trajectories","authors":"Binzhong Wang, Bin Wu, Xueqing Liu, Yacheng Hu, Yao Ming, Mingzhou Bai, Juanjuan Liu, Kan Xiao, Qingkai Zeng, Jing Yang, Hongqi Wang, Baifu Guo, Chun Tan, Zixuan Hu, Xun Zhao, Yanhong Li, Zhen Yue, Junpu Mei, Wei Jiang, Yuanjin Yang, Zhiyuan Li, Yong Gao, Lei Chen, Jianbo Jian, Hejun Du","doi":"10.1093/gpbjnl/qzad002","DOIUrl":"https://doi.org/10.1093/gpbjnl/qzad002","url":null,"abstract":"<jats:title>Abstract</jats:title> The order Acipenseriformes, which includes sturgeons and paddlefishes, represents “living fossils” with complex genomes that are good models for understanding whole-genome duplication (WGD) and ploidy evolution in fishes. Here, we sequenced and assembled the first high-quality chromosome-level genome for the complex octoploid Acipenser sinensis (Chinese sturgeon), a critically endangered species that also represents a poorly understood ploidy group in Acipenseriformes. Our results show that A. sinensis is a complex autooctoploid species containing four kinds of octovalents (8n), a hexavalent (6n), two tetravalents (4n), and a divalent (2n). An analysis taking into account delayed rediploidization reveals that the octoploid genome composition of Chinese sturgeon results from two rounds of homologous WGDs, and further provides insights into the timing of its ploidy evolution. This study provides the first octoploid genome resource of Acipenseriformes for understanding ploidy compositions and evolutionary trajectories of polyploidy fishes.","PeriodicalId":12528,"journal":{"name":"Genomics, Proteomics & Bioinformatics","volume":null,"pages":null},"PeriodicalIF":9.5,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139922085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TransCell: In silico Characterization of Genomic Landscape and Cellular Responses by Deep Transfer Learning TransCell:通过深度迁移学习对基因组图谱和细胞反应进行硅学表征
IF 9.5 2区 生物学
Genomics, Proteomics & Bioinformatics Pub Date : 2024-01-10 DOI: 10.1093/gpbjnl/qzad008
Shan-Ju Yeh, Shreya Paithankar, Ruoqiao Chen, Jing Xing, Mengying Sun, Ke Liu, Jiayu Zhou, Bin Chen
{"title":"TransCell: In silico Characterization of Genomic Landscape and Cellular Responses by Deep Transfer Learning","authors":"Shan-Ju Yeh, Shreya Paithankar, Ruoqiao Chen, Jing Xing, Mengying Sun, Ke Liu, Jiayu Zhou, Bin Chen","doi":"10.1093/gpbjnl/qzad008","DOIUrl":"https://doi.org/10.1093/gpbjnl/qzad008","url":null,"abstract":"<jats:title>Abstract</jats:title> Gene expression profiling of new or modified cell lines becomes routine today; however, obtaining comprehensive molecular characterization and cellular responses for a variety of cell lines, including those derived from underrepresented groups, is not trivial when resources are minimal. Using gene expression to predict other measurements has been actively explored; however, systematic investigation of its predictive power in various measurements has not been well studied. We evaluated commonly used machine learning methods and presented TransCell, a two-step deep transfer learning framework that utilized the knowledge derived from pan-cancer tumor samples to predict molecular features and responses. Among these models, TransCell has the best performance in predicting metabolite, gene effect score (or genetic dependency), and drug sensitivity, and has comparable performance in predicting mutation, copy number variation, and protein expression. Notably, TransCell improved the performance by over 50% in drug sensitivity prediction and achieved a correlation of 0.7 in gene effect score prediction. Furthermore, predicted drug sensitivities revealed potential repurposing candidates for new 100 pediatric cancer cell lines, and predicted gene effect scores reflected BRAF resistance in melanoma cell lines. Together, we investigated the predictive power of gene expression in six molecular measurement types and developed a web portal (http://apps.octad.org/transcell/) that enables the prediction of 352,000 genomic and cellular response features solely from gene expression profiles.","PeriodicalId":12528,"journal":{"name":"Genomics, Proteomics & Bioinformatics","volume":null,"pages":null},"PeriodicalIF":9.5,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139921997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbiome in Female Reproductive Health: Implications for Fertility and Assisted Reproductive Technologies 女性生殖健康中的微生物组:对生育和辅助生殖技术的影响
IF 9.5 2区 生物学
Genomics, Proteomics & Bioinformatics Pub Date : 2024-01-10 DOI: 10.1093/gpbjnl/qzad005
Liwen Xiao, Zhenqiang Zuo, Fangqing Zhao
{"title":"Microbiome in Female Reproductive Health: Implications for Fertility and Assisted Reproductive Technologies","authors":"Liwen Xiao, Zhenqiang Zuo, Fangqing Zhao","doi":"10.1093/gpbjnl/qzad005","DOIUrl":"https://doi.org/10.1093/gpbjnl/qzad005","url":null,"abstract":"<jats:title>Abstract</jats:title> The microbiome plays a critical role in the process of conception and the outcomes of pregnancy. Disruptions in microbiome homeostasis in women of reproductive age can lead to various pregnancy complications, which significantly impact maternal and fetal health. Recent studies have associated the microbiome in the female reproductive tract (FRT) with assisted reproductive technology (ART) outcomes, and restoring microbiome balance has been shown to improve fertility in infertile couples. This review provides an overview of the role of the microbiome in female reproductive health, including its implications for pregnancy outcomes and ARTs. Additionally, recent advances in the use of microbial biomarkers as indicators of pregnancy disorders are summarized. A comprehensive understanding of the characteristics of the microbiome before and during pregnancy and its impact on reproductive health will greatly promote maternal and fetal health. Such knowledge can also contribute to the development of ARTs and microbiome-based interventions.","PeriodicalId":12528,"journal":{"name":"Genomics, Proteomics & Bioinformatics","volume":null,"pages":null},"PeriodicalIF":9.5,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139922077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Q-BioLiP: A Comprehensive Resource for Quaternary Structure-based Protein–ligand Interactions Q-BioLiP:基于四元结构的蛋白质配体相互作用综合资源库
IF 9.5 2区 生物学
Genomics, Proteomics & Bioinformatics Pub Date : 2024-01-04 DOI: 10.1093/gpbjnl/qzae001
Hong Wei, Wenkai Wang, Zhenling Peng, Jianyi Yang
{"title":"Q-BioLiP: A Comprehensive Resource for Quaternary Structure-based Protein–ligand Interactions","authors":"Hong Wei, Wenkai Wang, Zhenling Peng, Jianyi Yang","doi":"10.1093/gpbjnl/qzae001","DOIUrl":"https://doi.org/10.1093/gpbjnl/qzae001","url":null,"abstract":"<jats:title>Abstract</jats:title> Since its establishment in 2013, BioLiP has become one of the widely used resources for protein–ligand interactions. Nevertheless, several known issues occurred with it over the past decade. For example, the protein–ligand interactions are represented in the form of single-chain-based tertiary structures, which may be inappropriate as many interactions involve multiple protein chains (known as quaternary structures). We sought to address these issues, resulting in Q-BioLiP, a comprehensive resource for quaternary structure-based protein–ligand interactions. The major features of Q-BioLiP include: (1) representing protein structures in the form of quaternary structures rather than single-chain-based tertiary structures; (2) pairing DNA/RNA chains properly rather than separation; (3) providing both experimental and predicted binding affinities; (4) retaining both biologically relevant and irrelevant interactions to alleviate the problem of the wrong justification of ligands’ biological relevance; and (5) developing a new quaternary structure-based algorithm for the modelling of protein–ligand complex structure. With these new features, Q-BioLiP is expected to be a valuable resource for studying biomolecule interactions, including protein–small molecule interaction, protein–metal ion interaction, protein–peptide interaction, protein–protein interaction, protein–DNA/RNA interaction, and RNA–small molecule interaction. Q-BioLiP is freely available at https://yanglab.qd.sdu.edu.cn/Q-BioLiP/.","PeriodicalId":12528,"journal":{"name":"Genomics, Proteomics & Bioinformatics","volume":null,"pages":null},"PeriodicalIF":9.5,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139921994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NextPolish2: A Repeat-aware Polishing Tool for Genomes Assembled Using HiFi Long Reads NextPolish2:使用 HiFi 长读数组装基因组的重复感知抛光工具
IF 9.5 2区 生物学
Genomics, Proteomics & Bioinformatics Pub Date : 2024-01-04 DOI: 10.1093/gpbjnl/qzad009
Jiang Hu, Zhuo Wang, Fan Liang, Shan-Lin Liu, Kai Ye, De-Peng Wang
{"title":"NextPolish2: A Repeat-aware Polishing Tool for Genomes Assembled Using HiFi Long Reads","authors":"Jiang Hu, Zhuo Wang, Fan Liang, Shan-Lin Liu, Kai Ye, De-Peng Wang","doi":"10.1093/gpbjnl/qzad009","DOIUrl":"https://doi.org/10.1093/gpbjnl/qzad009","url":null,"abstract":"<jats:title>Abstract</jats:title> The high-fidelity (HiFi) long-read sequencing technology developed by PacBio has greatly improved the base-level accuracy of genome assemblies. However, these assemblies still contain base-level errors, particularly within the error-prone regions of HiFi long reads. Existing genome polishing tools usually introduce overcorrections and haplotype switch errors when correcting errors in genomes assembled from HiFi long reads. Here we describe an upgraded genome polishing tool–NextPolish2, which can fix base errors remaining in those “highly accurate” genomes assembled from HiFi long reads without introducing excessive overcorrections and haplotype switch errors. We believe that NextPolish2 has a great significance to further improve the accuracy of telomere-to-telomere (T2T) genomes. NextPolish2 is freely available at https://github.com/Nextomics/NextPolish2.","PeriodicalId":12528,"journal":{"name":"Genomics, Proteomics & Bioinformatics","volume":null,"pages":null},"PeriodicalIF":9.5,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139922088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Systematic Exploration of Optimized Base Editing gRNA Design and Pleiotropic Effects with BExplorer. 利用 BExplorer 系统探索优化的碱基编辑 gRNA 设计和多效应。
IF 11.5 2区 生物学
Genomics, Proteomics & Bioinformatics Pub Date : 2023-12-01 Epub Date: 2022-07-02 DOI: 10.1016/j.gpb.2022.06.005
Gongchen Zhang, Chenyu Zhu, Xiaohan Chen, Jifang Yan, Dongyu Xue, Zixuan Wei, Guohui Chuai, Qi Liu
{"title":"Systematic Exploration of Optimized Base Editing gRNA Design and Pleiotropic Effects with BExplorer.","authors":"Gongchen Zhang, Chenyu Zhu, Xiaohan Chen, Jifang Yan, Dongyu Xue, Zixuan Wei, Guohui Chuai, Qi Liu","doi":"10.1016/j.gpb.2022.06.005","DOIUrl":"10.1016/j.gpb.2022.06.005","url":null,"abstract":"<p><p>Base editing technology is being increasingly applied in genome engineering, but the current strategy for designing guide RNAs (gRNAs) relies substantially on empirical experience rather than a dependable and efficient in silico design. Furthermore, the pleiotropic effect of base editing on disease treatment remains unexplored, which prevents its further clinical usage. Here, we presented BExplorer, an integrated and comprehensive computational pipeline to optimize the design of gRNAs for 26 existing types of base editors in silico. Using BExplorer, we described its results for two types of mainstream base editors, BE3 and ABE7.10, and evaluated the pleiotropic effects of the corresponding base editing loci. BExplorer revealed 524 and 900 editable pathogenic single nucleotide polymorphism (SNP) loci in the human genome together with the selected optimized gRNAs for BE3 and ABE7.10, respectively. In addition, the impact of 707 edited pathogenic SNP loci following base editing on 131 diseases was systematically explored by revealing their pleiotropic effects, indicating that base editing should be carefully utilized given the potential pleiotropic effects. Collectively, the systematic exploration of optimized base editing gRNA design and the corresponding pleiotropic effects with BExplorer provides a computational basis for applying base editing in disease treatment.</p>","PeriodicalId":12528,"journal":{"name":"Genomics, Proteomics & Bioinformatics","volume":null,"pages":null},"PeriodicalIF":11.5,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11082405/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40475056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
T2T-YAO: A Telomere-to-telomere Assembled Diploid Reference Genome for Han Chinese. T2T-YAO:从端粒到端粒的汉族二倍体参考基因组。
IF 11.5 2区 生物学
Genomics, Proteomics & Bioinformatics Pub Date : 2023-12-01 Epub Date: 2023-08-16 DOI: 10.1016/j.gpb.2023.08.001
Yukun He, Yanan Chu, Shuming Guo, Jiang Hu, Ran Li, Yali Zheng, Xinqian Ma, Zhenglin Du, Lili Zhao, Wenyi Yu, Jianbo Xue, Wenjie Bian, Feifei Yang, Xi Chen, Pingan Zhang, Rihan Wu, Yifan Ma, Changjun Shao, Jing Chen, Jian Wang, Jiwei Li, Jing Wu, Xiaoyi Hu, Qiuyue Long, Mingzheng Jiang, Hongli Ye, Shixu Song, Guangyao Li, Yue Wei, Yu Xu, Yanliang Ma, Yanwen Chen, Keqiang Wang, Jing Bao, Wen Xi, Fang Wang, Wentao Ni, Moqin Zhang, Yan Yu, Shengnan Li, Yu Kang, Zhancheng Gao
{"title":"T2T-YAO: A Telomere-to-telomere Assembled Diploid Reference Genome for Han Chinese.","authors":"Yukun He, Yanan Chu, Shuming Guo, Jiang Hu, Ran Li, Yali Zheng, Xinqian Ma, Zhenglin Du, Lili Zhao, Wenyi Yu, Jianbo Xue, Wenjie Bian, Feifei Yang, Xi Chen, Pingan Zhang, Rihan Wu, Yifan Ma, Changjun Shao, Jing Chen, Jian Wang, Jiwei Li, Jing Wu, Xiaoyi Hu, Qiuyue Long, Mingzheng Jiang, Hongli Ye, Shixu Song, Guangyao Li, Yue Wei, Yu Xu, Yanliang Ma, Yanwen Chen, Keqiang Wang, Jing Bao, Wen Xi, Fang Wang, Wentao Ni, Moqin Zhang, Yan Yu, Shengnan Li, Yu Kang, Zhancheng Gao","doi":"10.1016/j.gpb.2023.08.001","DOIUrl":"10.1016/j.gpb.2023.08.001","url":null,"abstract":"<p><p>Since its initial release in 2001, the human reference genome has undergone continuous improvement in quality, and the recently released telomere-to-telomere (T2T) version - T2T-CHM13 - reaches its highest level of continuity and accuracy after 20 years of effort by working on a simplified, nearly homozygous genome of a hydatidiform mole cell line. Here, to provide an authentic complete diploid human genome reference for the Han Chinese, the largest population in the world, we assembled the genome of a male Han Chinese individual, T2T-YAO, which includes T2T assemblies of all the 22 + X + M and 22 + Y chromosomes in both haploids. The quality of T2T-YAO is much better than those of all currently available diploid assemblies, and its haploid version, T2T-YAO-hp, generated by selecting the better assembly for each autosome, reaches the top quality of fewer than one error per 29.5 Mb, even higher than that of T2T-CHM13. Derived from an individual living in the aboriginal region of the Han population, T2T-YAO shows clear ancestry and potential genetic continuity from the ancient ancestors. Each haplotype of T2T-YAO possesses ∼ 330-Mb exclusive sequences, ∼ 3100 unique genes, and tens of thousands of nucleotide and structural variations as compared with CHM13, highlighting the necessity of a population-stratified reference genome. The construction of T2T-YAO, an accurate and authentic representative of the Chinese population, would enable precise delineation of genomic variations and advance our understandings in the hereditability of diseases and phenotypes, especially within the context of the unique variations of the Chinese population.</p>","PeriodicalId":12528,"journal":{"name":"Genomics, Proteomics & Bioinformatics","volume":null,"pages":null},"PeriodicalIF":11.5,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11082261/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10023539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sequence-based Functional Metagenomics Reveals Novel Natural Diversity of Functional CopA in Environmental Microbiomes. 基于序列的功能元基因组学揭示了环境微生物组中功能 CopA 的新的自然多样性。
IF 11.5 2区 生物学
Genomics, Proteomics & Bioinformatics Pub Date : 2023-12-01 Epub Date: 2022-09-08 DOI: 10.1016/j.gpb.2022.08.006
Wenjun Li, Likun Wang, Xiaofang Li, Xin Zheng, Michael F Cohen, Yong-Xin Liu
{"title":"Sequence-based Functional Metagenomics Reveals Novel Natural Diversity of Functional CopA in Environmental Microbiomes.","authors":"Wenjun Li, Likun Wang, Xiaofang Li, Xin Zheng, Michael F Cohen, Yong-Xin Liu","doi":"10.1016/j.gpb.2022.08.006","DOIUrl":"10.1016/j.gpb.2022.08.006","url":null,"abstract":"<p><p>Exploring the natural diversity of functional genes/proteins from environmental DNA in high throughput remains challenging. In this study, we developed a sequence-based functional metagenomics procedure for mining the diversity of copper (Cu) resistance gene copA in global microbiomes, by combining the metagenomic assembly technology, local BLAST, evolutionary trace analysis (ETA), chemical synthesis, and conventional functional genomics. In total, 87 metagenomes were collected from a public database and subjected to copA detection, resulting in 93,899 hits. Manual curation of 1214 hits of high confidence led to the retrieval of 517 unique CopA candidates, which were further subjected to ETA. Eventually, 175 novel copA sequences of high quality were discovered. Phylogenetic analysis showed that almost all these putative CopA proteins were distantly related to known CopA proteins, with 55 sequences from totally unknown species. Ten novel and three known copA genes were chemically synthesized for further functional genomic tests using the Cu-sensitive Escherichia coli (ΔcopA). The growth test and Cu uptake determination showed that five novel clones had positive effects on host Cu resistance and uptake. One recombinant harboring copA-like 15 (copAL15) successfully restored Cu resistance of the host with a substantially enhanced Cu uptake. Two novel copA genes were fused with the gfp gene and expressed in E. coli for microscopic observation. Imaging results showed that they were successfully expressed and their proteins were localized to the membrane. The results here greatly expand the diversity of known CopA proteins, and the sequence-based procedure developed overcomes biases in length, screening methods, and abundance of conventional functional metagenomics.</p>","PeriodicalId":12528,"journal":{"name":"Genomics, Proteomics & Bioinformatics","volume":null,"pages":null},"PeriodicalIF":11.5,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11082258/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33458568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信