Tao Yu, Yingfeng Luo, Xinyu Tan, Dahe Zhao, Xiaochun Bi, Chenji Li, Yanning Zheng, Hua Xiang, Songnian Hu
{"title":"Global Marine Cold Seep Metagenomes Reveal Diversity of Taxonomy, Metabolic Function, and Natural Products","authors":"Tao Yu, Yingfeng Luo, Xinyu Tan, Dahe Zhao, Xiaochun Bi, Chenji Li, Yanning Zheng, Hua Xiang, Songnian Hu","doi":"10.1093/gpbjnl/qzad006","DOIUrl":"https://doi.org/10.1093/gpbjnl/qzad006","url":null,"abstract":"<jats:title>Abstract</jats:title> Cold seeps in the deep sea are closely linked to energy exploration as well as global climate change. The alkane-dominated chemical energy-driven model makes cold seeps an oasis of deep-sea life, showcasing an unparalleled reservoir of microbial genetic diversity. By analyzing 113 metagenomes collected from 14 global sites across 5 cold seep types, we present a comprehensive Cold Seep Microbiomic Database (CSMD) to archive the genomic and functional diversity of cold seep microbiome. The CSMD included over 49 million non-redundant genes and 3175 metagenome-assembled genomes (MAGs), which represented 1895 species spanning 105 phyla. In addition, beta diversity analysis indicated that both the sampling site and cold seep type had a substantial impact on the prokaryotic microbiome community composition. Heterotrophic and anaerobic metabolisms were prevalent in microbial communities, accompanied by considerable mixotrophs and facultative anaerobes, highlighting the versatile metabolic potential in cold seeps. Furthermore, secondary metabolic gene cluster analysis indicated that at least 98.81% of the sequences potentially encoded novel natural products, with ribosomal processing peptides being the predominant type widely distributed in archaea and bacteria. Overall, the CSMD represents a valuable resource that would enhance the understanding and utilization of global cold seep microbiomes.","PeriodicalId":12528,"journal":{"name":"Genomics, Proteomics & Bioinformatics","volume":"414 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139922165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Binzhong Wang, Bin Wu, Xueqing Liu, Yacheng Hu, Yao Ming, Mingzhou Bai, Juanjuan Liu, Kan Xiao, Qingkai Zeng, Jing Yang, Hongqi Wang, Baifu Guo, Chun Tan, Zixuan Hu, Xun Zhao, Yanhong Li, Zhen Yue, Junpu Mei, Wei Jiang, Yuanjin Yang, Zhiyuan Li, Yong Gao, Lei Chen, Jianbo Jian, Hejun Du
{"title":"Whole-genome Sequencing Reveals Autooctoploidy in Chinese Sturgeon and Its Evolutionary Trajectories","authors":"Binzhong Wang, Bin Wu, Xueqing Liu, Yacheng Hu, Yao Ming, Mingzhou Bai, Juanjuan Liu, Kan Xiao, Qingkai Zeng, Jing Yang, Hongqi Wang, Baifu Guo, Chun Tan, Zixuan Hu, Xun Zhao, Yanhong Li, Zhen Yue, Junpu Mei, Wei Jiang, Yuanjin Yang, Zhiyuan Li, Yong Gao, Lei Chen, Jianbo Jian, Hejun Du","doi":"10.1093/gpbjnl/qzad002","DOIUrl":"https://doi.org/10.1093/gpbjnl/qzad002","url":null,"abstract":"<jats:title>Abstract</jats:title> The order Acipenseriformes, which includes sturgeons and paddlefishes, represents “living fossils” with complex genomes that are good models for understanding whole-genome duplication (WGD) and ploidy evolution in fishes. Here, we sequenced and assembled the first high-quality chromosome-level genome for the complex octoploid Acipenser sinensis (Chinese sturgeon), a critically endangered species that also represents a poorly understood ploidy group in Acipenseriformes. Our results show that A. sinensis is a complex autooctoploid species containing four kinds of octovalents (8n), a hexavalent (6n), two tetravalents (4n), and a divalent (2n). An analysis taking into account delayed rediploidization reveals that the octoploid genome composition of Chinese sturgeon results from two rounds of homologous WGDs, and further provides insights into the timing of its ploidy evolution. This study provides the first octoploid genome resource of Acipenseriformes for understanding ploidy compositions and evolutionary trajectories of polyploidy fishes.","PeriodicalId":12528,"journal":{"name":"Genomics, Proteomics & Bioinformatics","volume":"153 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139922085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Molecular Evolution of Protein Sequences and Codon Usage in Monkeypox Viruses","authors":"Ke-jia Shan, Changcheng Wu, Xiaolu Tang, Roujian Lu, Yaling Hu, Wenjie Tan, Jian Lu","doi":"10.1093/gpbjnl/qzad003","DOIUrl":"https://doi.org/10.1093/gpbjnl/qzad003","url":null,"abstract":"<jats:title>Abstract</jats:title> The monkeypox virus (mpox virus, MPXV) epidemic in 2022 has posed a significant public health risk. Yet, the evolutionary principles of MPXV remain largely unknown. Here, we examined the evolutionary patterns of protein sequences and codon usage in MPXV. We first demonstrated the signal of positive selection in OPG027, specifically in the Clade I lineage of MPXV. Subsequently, we discovered accelerated protein sequence evolution over time in the variants responsible for the 2022 outbreak. Furthermore, we showed strong epistasis between amino acid substitutions located in different genes. The codon adaptation index (CAI) analysis revealed that MPXV genes tended to use more non-preferred codons compared to human genes, and the CAI decreased over time and diverged between clades, with Clade I &gt; IIa and IIb-A &gt; IIb-B. While the decrease in fatality rate among the three groups aligned with the CAI pattern, it remains unclear whether this correlation was coincidental or if the deoptimization of codon usage in MPXV led to a reduction in fatality rates. This study sheds new light on the mechanisms that govern the evolution of MPXV in human populations.","PeriodicalId":12528,"journal":{"name":"Genomics, Proteomics & Bioinformatics","volume":"12 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139922082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shan-Ju Yeh, Shreya Paithankar, Ruoqiao Chen, Jing Xing, Mengying Sun, Ke Liu, Jiayu Zhou, Bin Chen
{"title":"TransCell: In silico Characterization of Genomic Landscape and Cellular Responses by Deep Transfer Learning","authors":"Shan-Ju Yeh, Shreya Paithankar, Ruoqiao Chen, Jing Xing, Mengying Sun, Ke Liu, Jiayu Zhou, Bin Chen","doi":"10.1093/gpbjnl/qzad008","DOIUrl":"https://doi.org/10.1093/gpbjnl/qzad008","url":null,"abstract":"<jats:title>Abstract</jats:title> Gene expression profiling of new or modified cell lines becomes routine today; however, obtaining comprehensive molecular characterization and cellular responses for a variety of cell lines, including those derived from underrepresented groups, is not trivial when resources are minimal. Using gene expression to predict other measurements has been actively explored; however, systematic investigation of its predictive power in various measurements has not been well studied. We evaluated commonly used machine learning methods and presented TransCell, a two-step deep transfer learning framework that utilized the knowledge derived from pan-cancer tumor samples to predict molecular features and responses. Among these models, TransCell has the best performance in predicting metabolite, gene effect score (or genetic dependency), and drug sensitivity, and has comparable performance in predicting mutation, copy number variation, and protein expression. Notably, TransCell improved the performance by over 50% in drug sensitivity prediction and achieved a correlation of 0.7 in gene effect score prediction. Furthermore, predicted drug sensitivities revealed potential repurposing candidates for new 100 pediatric cancer cell lines, and predicted gene effect scores reflected BRAF resistance in melanoma cell lines. Together, we investigated the predictive power of gene expression in six molecular measurement types and developed a web portal (http://apps.octad.org/transcell/) that enables the prediction of 352,000 genomic and cellular response features solely from gene expression profiles.","PeriodicalId":12528,"journal":{"name":"Genomics, Proteomics & Bioinformatics","volume":"12 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139921997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microbiome in Female Reproductive Health: Implications for Fertility and Assisted Reproductive Technologies","authors":"Liwen Xiao, Zhenqiang Zuo, Fangqing Zhao","doi":"10.1093/gpbjnl/qzad005","DOIUrl":"https://doi.org/10.1093/gpbjnl/qzad005","url":null,"abstract":"<jats:title>Abstract</jats:title> The microbiome plays a critical role in the process of conception and the outcomes of pregnancy. Disruptions in microbiome homeostasis in women of reproductive age can lead to various pregnancy complications, which significantly impact maternal and fetal health. Recent studies have associated the microbiome in the female reproductive tract (FRT) with assisted reproductive technology (ART) outcomes, and restoring microbiome balance has been shown to improve fertility in infertile couples. This review provides an overview of the role of the microbiome in female reproductive health, including its implications for pregnancy outcomes and ARTs. Additionally, recent advances in the use of microbial biomarkers as indicators of pregnancy disorders are summarized. A comprehensive understanding of the characteristics of the microbiome before and during pregnancy and its impact on reproductive health will greatly promote maternal and fetal health. Such knowledge can also contribute to the development of ARTs and microbiome-based interventions.","PeriodicalId":12528,"journal":{"name":"Genomics, Proteomics & Bioinformatics","volume":"7 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139922077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Q-BioLiP: A Comprehensive Resource for Quaternary Structure-based Protein–ligand Interactions","authors":"Hong Wei, Wenkai Wang, Zhenling Peng, Jianyi Yang","doi":"10.1093/gpbjnl/qzae001","DOIUrl":"https://doi.org/10.1093/gpbjnl/qzae001","url":null,"abstract":"<jats:title>Abstract</jats:title> Since its establishment in 2013, BioLiP has become one of the widely used resources for protein–ligand interactions. Nevertheless, several known issues occurred with it over the past decade. For example, the protein–ligand interactions are represented in the form of single-chain-based tertiary structures, which may be inappropriate as many interactions involve multiple protein chains (known as quaternary structures). We sought to address these issues, resulting in Q-BioLiP, a comprehensive resource for quaternary structure-based protein–ligand interactions. The major features of Q-BioLiP include: (1) representing protein structures in the form of quaternary structures rather than single-chain-based tertiary structures; (2) pairing DNA/RNA chains properly rather than separation; (3) providing both experimental and predicted binding affinities; (4) retaining both biologically relevant and irrelevant interactions to alleviate the problem of the wrong justification of ligands’ biological relevance; and (5) developing a new quaternary structure-based algorithm for the modelling of protein–ligand complex structure. With these new features, Q-BioLiP is expected to be a valuable resource for studying biomolecule interactions, including protein–small molecule interaction, protein–metal ion interaction, protein–peptide interaction, protein–protein interaction, protein–DNA/RNA interaction, and RNA–small molecule interaction. Q-BioLiP is freely available at https://yanglab.qd.sdu.edu.cn/Q-BioLiP/.","PeriodicalId":12528,"journal":{"name":"Genomics, Proteomics & Bioinformatics","volume":"118 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139921994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiang Hu, Zhuo Wang, Fan Liang, Shan-Lin Liu, Kai Ye, De-Peng Wang
{"title":"NextPolish2: A Repeat-aware Polishing Tool for Genomes Assembled Using HiFi Long Reads","authors":"Jiang Hu, Zhuo Wang, Fan Liang, Shan-Lin Liu, Kai Ye, De-Peng Wang","doi":"10.1093/gpbjnl/qzad009","DOIUrl":"https://doi.org/10.1093/gpbjnl/qzad009","url":null,"abstract":"<jats:title>Abstract</jats:title> The high-fidelity (HiFi) long-read sequencing technology developed by PacBio has greatly improved the base-level accuracy of genome assemblies. However, these assemblies still contain base-level errors, particularly within the error-prone regions of HiFi long reads. Existing genome polishing tools usually introduce overcorrections and haplotype switch errors when correcting errors in genomes assembled from HiFi long reads. Here we describe an upgraded genome polishing tool–NextPolish2, which can fix base errors remaining in those “highly accurate” genomes assembled from HiFi long reads without introducing excessive overcorrections and haplotype switch errors. We believe that NextPolish2 has a great significance to further improve the accuracy of telomere-to-telomere (T2T) genomes. NextPolish2 is freely available at https://github.com/Nextomics/NextPolish2.","PeriodicalId":12528,"journal":{"name":"Genomics, Proteomics & Bioinformatics","volume":"1 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139922088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"T2T-YAO: A Telomere-to-telomere Assembled Diploid Reference Genome for Han Chinese.","authors":"Yukun He, Yanan Chu, Shuming Guo, Jiang Hu, Ran Li, Yali Zheng, Xinqian Ma, Zhenglin Du, Lili Zhao, Wenyi Yu, Jianbo Xue, Wenjie Bian, Feifei Yang, Xi Chen, Pingan Zhang, Rihan Wu, Yifan Ma, Changjun Shao, Jing Chen, Jian Wang, Jiwei Li, Jing Wu, Xiaoyi Hu, Qiuyue Long, Mingzheng Jiang, Hongli Ye, Shixu Song, Guangyao Li, Yue Wei, Yu Xu, Yanliang Ma, Yanwen Chen, Keqiang Wang, Jing Bao, Wen Xi, Fang Wang, Wentao Ni, Moqin Zhang, Yan Yu, Shengnan Li, Yu Kang, Zhancheng Gao","doi":"10.1016/j.gpb.2023.08.001","DOIUrl":"10.1016/j.gpb.2023.08.001","url":null,"abstract":"<p><p>Since its initial release in 2001, the human reference genome has undergone continuous improvement in quality, and the recently released telomere-to-telomere (T2T) version - T2T-CHM13 - reaches its highest level of continuity and accuracy after 20 years of effort by working on a simplified, nearly homozygous genome of a hydatidiform mole cell line. Here, to provide an authentic complete diploid human genome reference for the Han Chinese, the largest population in the world, we assembled the genome of a male Han Chinese individual, T2T-YAO, which includes T2T assemblies of all the 22 + X + M and 22 + Y chromosomes in both haploids. The quality of T2T-YAO is much better than those of all currently available diploid assemblies, and its haploid version, T2T-YAO-hp, generated by selecting the better assembly for each autosome, reaches the top quality of fewer than one error per 29.5 Mb, even higher than that of T2T-CHM13. Derived from an individual living in the aboriginal region of the Han population, T2T-YAO shows clear ancestry and potential genetic continuity from the ancient ancestors. Each haplotype of T2T-YAO possesses ∼ 330-Mb exclusive sequences, ∼ 3100 unique genes, and tens of thousands of nucleotide and structural variations as compared with CHM13, highlighting the necessity of a population-stratified reference genome. The construction of T2T-YAO, an accurate and authentic representative of the Chinese population, would enable precise delineation of genomic variations and advance our understandings in the hereditability of diseases and phenotypes, especially within the context of the unique variations of the Chinese population.</p>","PeriodicalId":12528,"journal":{"name":"Genomics, Proteomics & Bioinformatics","volume":" ","pages":"1085-1100"},"PeriodicalIF":11.5,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11082261/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10023539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Proteome Landscape of Human Placentas for Monochorionic Twins with Selective Intrauterine Growth Restriction.","authors":"Xin-Lu Meng, Peng-Bo Yuan, Xue-Ju Wang, Jing Hang, Xiao-Ming Shi, Yang-Yu Zhao, Yuan Wei","doi":"10.1016/j.gpb.2023.03.002","DOIUrl":"10.1016/j.gpb.2023.03.002","url":null,"abstract":"<p><p>In perinatal medicine, intrauterine growth restriction (IUGR) is one of the greatest challenges. The etiology of IUGR is multifactorial, but most cases are thought to arise from placental insufficiency. However, identifying the placental cause of IUGR can be difficult due to numerous confounding factors. Selective IUGR (sIUGR) would be a good model to investigate how impaired placentation affects fetal development, as the growth discordance between monochorionic twins cannot be explained by confounding genetic or maternal factors. Herein, we constructed and analyzed the placental proteomic profiles of IUGR twins and normal cotwins. Specifically, we identified a total of 5481 proteins, of which 233 were differentially expressed (57 up-regulated and 176 down-regulated) in IUGR twins. Bioinformatics analysis indicates that these differentially expressed proteins (DEPs) are mainly associated with cardiovascular system development and function, organismal survival, and organismal development. Notably, 34 DEPs are significantly enriched in angiogenesis, and diminished placental angiogenesis in IUGR twins has been further elaborately confirmed. Moreover, we found decreased expression of metadherin (MTDH) in the placentas of IUGR twins and demonstrated that MTDH contributes to placental angiogenesis and fetal growth in vitro. Collectively, our findings reveal the comprehensive proteomic signatures of placentas for sIUGR twins, and the DEPs identified may provide in-depth insights into the pathogenesis of placental dysfunction and subsequent impaired fetal growth.</p>","PeriodicalId":12528,"journal":{"name":"Genomics, Proteomics & Bioinformatics","volume":" ","pages":"1246-1259"},"PeriodicalIF":11.5,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11082409/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9375205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comprehensive Characterization and Global Transcriptome Analysis of Human Fetal Liver Terminal Erythropoiesis.","authors":"Yongshuai Han, Shihui Wang, Yaomei Wang, Yumin Huang, Chengjie Gao, Xinhua Guo, Lixiang Chen, Huizhi Zhao, Xiuli An","doi":"10.1016/j.gpb.2023.07.001","DOIUrl":"10.1016/j.gpb.2023.07.001","url":null,"abstract":"<p><p>The fetal liver (FL) is the key erythropoietic organ during fetal development, but knowledge on human FL erythropoiesis is very limited. In this study, we sorted primary erythroblasts from FL cells and performed RNA sequencing (RNA-seq) analyses. We found that temporal gene expression patterns reflected changes in function during primary human FL terminal erythropoiesis. Notably, the expression of genes enriched in proteolysis and autophagy was up-regulated in orthochromatic erythroblasts (OrthoEs), suggesting the involvement of these pathways in enucleation. We also performed RNA-seq of in vitro cultured erythroblasts derived from FL CD34<sup>+</sup> cells. Comparison of transcriptomes between the primary and cultured erythroblasts revealed significant differences, indicating impacts of the culture system on gene expression. Notably, the expression of lipid metabolism-related genes was increased in cultured erythroblasts. We further immortalized erythroid cell lines from FL and cord blood (CB) CD34<sup>+</sup> cells (FL-iEry and CB-iEry, respectively). FL-iEry and CB-iEry were immortalized at the proerythroblast stage and can be induced to differentiate into OrthoEs, but their enucleation ability was very low. Comparison of the transcriptomes between OrthoEs with and without enucleation capability revealed the down-regulation of pathways involved in chromatin organization and mitophagy in OrthoEs without enucleation capacity, indicating that defects in chromatin organization and mitophagy contribute to the inability of OrthoEs to enucleate. Additionally, the expression of HBE1, HBZ, and HBG2 was up-regulated in FL-iEry compared with CB-iEry, and such up-regulation was accompanied by down-regulated expression of BCL11A and up-regulated expression of LIN28B and IGF2BP1. Our study provides new insights into human FL erythropoiesis and rich resources for future studies.</p>","PeriodicalId":12528,"journal":{"name":"Genomics, Proteomics & Bioinformatics","volume":" ","pages":"1117-1132"},"PeriodicalIF":11.5,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11082260/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10135733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}