Tao Yu, Yingfeng Luo, Xinyu Tan, Dahe Zhao, Xiaochun Bi, Chenji Li, Yanning Zheng, Hua Xiang, Songnian Hu
{"title":"Global Marine Cold Seep Metagenomes Reveal Diversity of Taxonomy, Metabolic Function, and Natural Products","authors":"Tao Yu, Yingfeng Luo, Xinyu Tan, Dahe Zhao, Xiaochun Bi, Chenji Li, Yanning Zheng, Hua Xiang, Songnian Hu","doi":"10.1093/gpbjnl/qzad006","DOIUrl":null,"url":null,"abstract":"<jats:title>Abstract</jats:title> Cold seeps in the deep sea are closely linked to energy exploration as well as global climate change. The alkane-dominated chemical energy-driven model makes cold seeps an oasis of deep-sea life, showcasing an unparalleled reservoir of microbial genetic diversity. By analyzing 113 metagenomes collected from 14 global sites across 5 cold seep types, we present a comprehensive Cold Seep Microbiomic Database (CSMD) to archive the genomic and functional diversity of cold seep microbiome. The CSMD included over 49 million non-redundant genes and 3175 metagenome-assembled genomes (MAGs), which represented 1895 species spanning 105 phyla. In addition, beta diversity analysis indicated that both the sampling site and cold seep type had a substantial impact on the prokaryotic microbiome community composition. Heterotrophic and anaerobic metabolisms were prevalent in microbial communities, accompanied by considerable mixotrophs and facultative anaerobes, highlighting the versatile metabolic potential in cold seeps. Furthermore, secondary metabolic gene cluster analysis indicated that at least 98.81% of the sequences potentially encoded novel natural products, with ribosomal processing peptides being the predominant type widely distributed in archaea and bacteria. Overall, the CSMD represents a valuable resource that would enhance the understanding and utilization of global cold seep microbiomes.","PeriodicalId":12528,"journal":{"name":"Genomics, Proteomics & Bioinformatics","volume":"414 1","pages":""},"PeriodicalIF":11.5000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, Proteomics & Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gpbjnl/qzad006","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract Cold seeps in the deep sea are closely linked to energy exploration as well as global climate change. The alkane-dominated chemical energy-driven model makes cold seeps an oasis of deep-sea life, showcasing an unparalleled reservoir of microbial genetic diversity. By analyzing 113 metagenomes collected from 14 global sites across 5 cold seep types, we present a comprehensive Cold Seep Microbiomic Database (CSMD) to archive the genomic and functional diversity of cold seep microbiome. The CSMD included over 49 million non-redundant genes and 3175 metagenome-assembled genomes (MAGs), which represented 1895 species spanning 105 phyla. In addition, beta diversity analysis indicated that both the sampling site and cold seep type had a substantial impact on the prokaryotic microbiome community composition. Heterotrophic and anaerobic metabolisms were prevalent in microbial communities, accompanied by considerable mixotrophs and facultative anaerobes, highlighting the versatile metabolic potential in cold seeps. Furthermore, secondary metabolic gene cluster analysis indicated that at least 98.81% of the sequences potentially encoded novel natural products, with ribosomal processing peptides being the predominant type widely distributed in archaea and bacteria. Overall, the CSMD represents a valuable resource that would enhance the understanding and utilization of global cold seep microbiomes.
期刊介绍:
Genomics, Proteomics and Bioinformatics (GPB) is the official journal of the Beijing Institute of Genomics, Chinese Academy of Sciences / China National Center for Bioinformation and Genetics Society of China. It aims to disseminate new developments in the field of omics and bioinformatics, publish high-quality discoveries quickly, and promote open access and online publication. GPB welcomes submissions in all areas of life science, biology, and biomedicine, with a focus on large data acquisition, analysis, and curation. Manuscripts covering omics and related bioinformatics topics are particularly encouraged. GPB is indexed/abstracted by PubMed/MEDLINE, PubMed Central, Scopus, BIOSIS Previews, Chemical Abstracts, CSCD, among others.